首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2011年   2篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   
2.
The cell permeability of hesperetin and hesperidin, anti-allergic compounds from citrus fruits, was measured using Caco-2 monolayers. In the presence of a proton gradient, hesperetin permeated cells in the apical-to-basolateral direction at the rate (Jap → bl) of 10.43 ± 0.78 nmol/min/mg protein, which was more than 400-fold higher than that of hesperidin (0.023 ± 0.008 nmol/min/mg protein). The transepithelial flux of hesperidin, both in the presence or absence of a proton gradient, was nearly the same and was inversely correlated with the transepithelial electrical resistance (TER), indicating that the transport of hesperidin was mainly via paracellular diffusion. In contrast, the transepithelial flux of hesperetin was almost constant irrespective of the TER. Apically loaded NaN3 or carbonyl cyanide m-chlorophenylhydrazone (CCCP) decreased the Jap → bl of hesperetin, in the presence of proton gradient, by one-half. In the absence of a proton gradient, both Jap → bl and Jbl → ap of hesperetin were almost the same (5.75 ± 0.40 and 5.16 ± 0.73 nmol/min/mg protein). Jbl → ap of hesperetin in the presence of a proton gradient was lower than Jbl → ap in the absence of a proton gradient. Furthermore, Jbl → ap in the presence of a proton gradient remarkably increased upon addition of NaN3 specifically to the apical side. These results indicate that hesperetin is absorbed by transcellular transport, which occurs mainly via proton-coupled active transport, and passive diffusion. Thus, hesperetin is efficiently absorbed from the intestine, whereas hesperidin is poorly transported via the paracellular pathway and its transport is highly dependent on conversion to hesperetin via the hydrolytic action of microflora. We have given novel insight to the absorption characteristics of hesperetin, that is proton-coupled and energy-dependent polarized transport.  相似文献   
3.
Wang W  Liu Q  Wang C  Meng Q  Kaku T  Liu K 《Peptides》2011,32(5):946-955
To investigate the effect of JBP485 (an anti-inflammatory dipeptide) on PEPT1 in indomethacin-induced intestinal injury in rats and damage in Caco-2 cells, the activity and expression of PEPT1 were examined. The effects of treatment with indomethacin and co-treatment with JBP485 were examined in terms of intestinal histological changes, MDA and MPO levels in rats; as well as LDH-release and oxidative stress in Caco-2 cells. Uptake of glycylsarcosine (Gly-Sar) by PEPT1 was determined by in vivo, in vitro and in situ studies. RT-PCR and Western blot were used to assess the expression of PEPT1 in rat intestine and Caco-2 cells. JBP485 caused a significant decrease in MDA and MPO levels, and improved the pathological condition of rat intestine, while attenuating Caco-2 cells damage induced by indomethacin. Uptake of Gly-Sar by PEPT1 was decreased by indomethacin treatment, whereas the Gly-Sar plasma concentration was markedly increased in JBP485 co-treated rats. Indomethacin down-regulated the expression of PEPT1 mRNA and protein in rat intestine and Caco-2 cells, and the effects were reversed after administration of JBP485. These results indicated that JBP485 not only improved intestinal injury and cell damage but also partially blocked the down-regulation of PEPT1 expression and function induced by indomethacin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号