首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   29篇
  国内免费   13篇
  2023年   4篇
  2022年   8篇
  2021年   7篇
  2020年   5篇
  2019年   10篇
  2018年   21篇
  2017年   11篇
  2016年   11篇
  2015年   19篇
  2014年   40篇
  2013年   57篇
  2012年   22篇
  2011年   42篇
  2010年   21篇
  2009年   21篇
  2008年   20篇
  2007年   36篇
  2006年   24篇
  2005年   32篇
  2004年   20篇
  2003年   17篇
  2002年   15篇
  2001年   12篇
  2000年   18篇
  1999年   14篇
  1998年   8篇
  1997年   18篇
  1996年   9篇
  1995年   17篇
  1994年   12篇
  1993年   14篇
  1992年   11篇
  1991年   18篇
  1990年   11篇
  1989年   14篇
  1988年   9篇
  1987年   6篇
  1985年   7篇
  1984年   12篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   7篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   7篇
  1973年   2篇
  1972年   2篇
排序方式: 共有709条查询结果,搜索用时 31 毫秒
1.
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.  相似文献   
2.
Binding of chemoattractants to specific cell surface receptors on polymorphonuclear leukocytes (PMNs) initiates a series of biochemical responses leading to cellular activation. A critical early biochemical event in chemoattractant (CTX) receptor-mediated signal transduction is the phosphodiesteric cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), with concomitant production of the calcium mobilizing inositol-1,4,5-trisphosphate (IP3) isomer, and the protein kinase C activator, 1,2-diacylglycerol (DAG). The following lines of experimental evidence collectively suggest that CTX receptors are coupled to phospholipase C via a guanine nucleotide binding (G) protein. Receptor-mediated hydrolysis of PIP2 in PMN plasma membrane preparations requires both fMet-Leu-Phe and GTP, and incubation of intact PMNs with pertussis toxin (which ADP ribosylates and inactivates some G proteins) eliminates the ability of fMet-Leu-Phe plus GTP to promote PIP2 breakdown in isolated plasma membranes. Studies with both PMN particulate fractions and with partially purified fMet-Leu-Phe receptor preparations indicate that guanine nucleotides regulate CTX receptor affinity. Finally, fMet-Leu-Phe stimulates high-affinity binding of GTP gamma S to PMN membranes as well as GTPase activity. A G alpha subunit has been identified in phagocyte membranes which is different from other G alpha subunits on the basis of molecular weight and differential sensitivity to ribosylation by bacterial toxins. Thus, a novel G protein may be involved in coupling CTX receptors to phospholipase C. Studies in intact and sonicated PMNs demonstrate that metabolism of 1,4,5-IP3 proceeds via two distinct pathways: 1) sequential dephosphorylation to 1,4-IP2, 4-IP1 and inositol, or 2) ATP-dependent conversion to inositol 1,3,4,5-tetrakisphosphate (IP4) followed by sequential dephosphorylation to 1,3,4-IP3, 3,4-IP2, 3-IP1 and inositol. Receptor-mediated hydrolysis of PIP2 occurs at ambient intracellular Ca2+ levels; but metabolism of 1,4,5-IP3 via the IP4 pathway requires elevated cytosolic Ca2+ levels associated with cellular activation. Thus, the two pathways for 1,4,5-IP3 metabolism may serve different metabolic functions. Additionally, inositol phosphate production appears to be controlled by protein kinase C, as phorbol myristate acetate (PMA) abrogates PIP2 hydrolysis by interfering with the ability of the activated G protein to stimulate phospholipase C. This implies a physiologic mechanism for terminating biologic responses via protein kinase C mediated feedback inhibition of PIP2 hydrolysis.  相似文献   
3.
Inositol 1,4,5-trisphosphate 5-phosphatase catalyses the dephosphorylation of the phosphate in the 5-position from inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. One particulate and two soluble enzymes were previously described in bovine brain. In this study, we have obtained a precipitating antiserum against soluble type I inositol 1,4,5-trisphosphate 5-phosphatase. The particulate, but not the soluble type II enzyme, was immunoprecipitated by the serum. Inositol 1,4,5-triphosphate 5-phosphatase activity from crude extracts of rat brain, human platelets and rat liver were immmunoprecipitated by the same antibodies, suggesting the existence of common antigenic determinant among inositol 1,4,5-trisphosphate 5-phosphatases of diverse sources.  相似文献   
4.
This essay attempts to summarize some of the best evidence for the role of inositol trisphosphate as a second messenger in signal transduction processes. The following aspects are addressed in the essay: (a) The synthesis of inositol trisphosphate and other inositol lipids, (b) Receptor-phosphatidylinositol bisphosphate phospholipase C coupling and the N-ras protooncogene, (c) Inositol trisphosphate and intracellular calcium, (d) Cell growth and oncogenes, (e) Receptors linked to the phosphatidylinositol cycle, (f) Phototransduction and (g) Interactions between inositol trisphosphate and other second messengers.Abbreviations Cyclic AMP Adenosine 3,5-cyclic monophosphate - Cyclic GMP Guanosine 3,5-cyclic monophosphate - DG sn, 1,2-Diacylglycerol - EGF Epidermal growth factor - GDP Guanosine diphosphate - GTP Guanosine triphosphate - IP Inositol 1-monophosphate - IP2 Inositol 1,4-diphosphate - IP3 Inositol 1,4,5-trisphosphate - PA Phosphatidic acid - PDGF Platelet-derived growth factor - PI Phosphatidylinositol - PIP Phosphatidylinositol 4-monophosphate - PIP2 Phosphatidylinositol 4,5-bisphosphate - PIP3 Phosphatidylinositol 3,4,5-trisphosphate - PLC Phospholipase C  相似文献   
5.
Carbachol (CCh), a muscarinic agonist that elicits the formation of inositol trisphosphate (IP3) and diacylglycerol (DG), induces a calcium-dependent [3H]norepinephrine ([3H]NE) release [IC50 = (2.7 +/- 0.5) X 10(-4) M] in rat brain slices. Similarly, other muscarinic agonists evoke [3H]NE release which is specifically inhibited by muscarinic antagonists such as 3-quinuclidinyl benzilate, atropine, and N-methyl-4-piperidyl benzilate. The atropine-sensitive evoked release is effectively inhibited by neomycin (IC50 = 50 microM), a phospholipase C inhibitor that interferes with IP3-dependent cellular processes. In addition, polymyxin B, a rather selective inhibitor of protein kinase C (PK-C), abolishes the agonist-mediated release with a half-maximal effective concentration of 0.53 microM (750 ng/ml). These results have a significant implication for the mechanism by which agonists generating IP3 and DG act as inducers of neurotransmitter release in the CNS. However, since both neomycin and polymyxin B act also as N-calcium-channel blockers, other possible mechanisms are discussed. The CCh-induced release suggests that in the CNS an agonist-receptor interaction leads to a calcium-dependent neurotransmitter release, most likely via promoting the IP3/DG as second messengers followed by activation of PK-C.  相似文献   
6.
A conserved aspartic acid residue in the third transmembrane region of many of the G protein-coupled receptors has been shown to play a role in ligand binding. In the case of endothelin receptors, however, a lysine residue replaces this conserved aspartic acid residue. To access the importance of this residue in ligand binding, we have replaced it with an aspartic acid in the rat endothelin type B (ETb) receptor by PCR mediated mutagenesis. The binding characteristics and functional properties of both the wild type and mutant receptors were determined in COS-7 cells transiently expressing the cloned receptor cDNAs. Using 125I-ET-1 as the radioactive peptide ligand in displacement binding studies, the wild type receptor displayed a typical non-isopeptide-selective binding profile with similar IC50 values (0.2-0.6 nM) for all three endothelin peptides (ET-1, ET-2, and ET-3) and sarafotoxin 6c (SRTX 6c). Interestingly, the mutant receptor showed an increase in IC50 values for ET-1 (5 nM), ET-2 (27 nM), and ET-3 (127 nM) but displayed a much larger increase in IC50 value for SRTX 6c (> 10 uM). The lysine mutant receptor still elicited full inositol phosphate (IP) turnover responses in the presence of saturating concentrations of endothelins (10 nM of ET-1, 100 nM of ET-2, or 1 uM of ET-3), indicating that the mutation (K181D) did not affect the coupling of mutant receptor to the appropriate G protein. These results demonstrate that lysine-181 on the receptor is important for binding ET peptides; however, it is required for binding the ETb selective agonist-SRTX 6c.  相似文献   
7.
The ability of two enantiomeric fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. (-)-D-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 [D-2,2-F2-Ins(1,4,5)P3] was a full agonist [EC50 0.21 microM] and slightly less potent than D-Ins(1,4,5)P3 [EC50 0.13 microM]. (+)-L-2,2-F2Ins(1,4,5)P3 was a very poor agonist, confirming the stereospecificity of the Ins(1,4,5)P3 receptor. D-2,2-F2-Ins(1,4,5)P3 mobilized Ca2+ with broadly similar kinetics to Ins(1,4,5)P3 and was a substrate for Ins(1,4,5)P3 3-kinase inhibiting Ins(1,4,5)P3 phosphorylation (apparent Ki = 10.2 microM) but was recognised less well than Ins(1,4,5)P3. L-2,2-F2-Ins(1,4,5)P3 was a potent competitive inhibitor of 3-kinase (Ki = 11.9 microM). Whereas D-2,2-F2-Ins(1,4,5)P3 was a good substrate for Ins(1,4,5)P3 5-phosphatase, L-2,2-F2Ins(1,4,5)P3 was a relatively potent inhibitor (Ki = 19.0 microM).  相似文献   
8.
Hemoglobin Dallas, an α-chain variant with a substitution of lysine for asparagine at position 97(G4), was found to have increased oxygen affinity (p12 = 1 mmHg at pH 7.3 and 20°C), diminished cooperativity (0n, the Hill coefficient = 1.7) and reduced Bohr effect (about 50%). Addition of allosteric effectors (such as 2,3-diphosphoglycerate, inositol hexakisphosphate and bezafibrate) led to a decrease in oxygen affinity and increase in cooperative energy. Kinetic studies at pH 7.0 and 20°C revealed that (i), the overall rate of oxygen dissociation is 1.4-fold slower than that for HbA and (ii), the carbon monoxide dissociation rate is unaffected. The abnormal properties of this hemoglobin variant can be atttributed to a more ‘relaxed’ T-state.  相似文献   
9.
The effects of lithium (Li+) on the adenylyl cyclase and inositol phospholipid receptor signalling pathways were compared directly in noradrenergic and carbachol stimulated rat brain cortical tissue slices. Li+ was a comparatively weak inhibitor of noradrenaline-stimulated cyclic AMP accumulation with an IC50 of approx. 20 mM. By contrast, half-maximal effects of Li+ on inositol monophosphate (InsP) accumulation in [3H]inositol labelled tissue slices occurred at about 1 mM. A similar IC50 for Li+ of about 1 mM was also obtained for noradrenaline-stimulated accumulation of CMP-phosphatidate (CMPPA), a sensitive indicator of intracellular inositol depletion, in tissue slices that had been prelabelled with [3H]cytidine. The effect of myo-inositol (inositol) depletion on the prolonged activity of phosphoinositidase C (PIC) was examined in carbachol-stimulated corticol slices using a novel mass assay fro InsP. Exposure to a maximal dose of carbachol for 30 min in the presence of 5 mM Li+ caused a 10-fold increase in the level of radioactivity associated with the InsP fraction, but only a 2-fold increase in InsP mass. During prolonged incubations in the presence of both carbachol and Li+ the accumulation of InsP mass was enhanced if 30 mM inositol was included in the medium. The results are comptable with the inositol depletion hypothesis of Li+ action but do not support the concept that adenylyl cyclase or guanine nucleotide dependent proteins represent therapeutically relevant targets of this drug.  相似文献   
10.
Intracellular Ca2+ mobilization events were assessed in mouse L cells, which contain native prostaglandin E1 receptors and transfected human 2 adrenergic receptors. Both Fura2 (single cell measurements) and Quin 2, (cuvette assays) were used to determine [Ca2+]i levels. Our results demonstrate that in the transfected cells there is a dose-dependent increase in [Ca2+]i in response to isoproterenol (0.1 nM–100 nM), which is inhibited by the -adrenergic antagonist, propranolol, and is a result of intracellular Ca2+ release. [Ca2+]1 in these cells was also increased by prostaglandin E1, 8 bromo cyclic AMP, and aluminum fluoride. Both 8 bromo cAMP and isoproterenol induced a rapid increase in the levels of IP1, IP2, and IP3. The data presented demonstrate that the elevation of intracellular cyclic AMP induces an increase in IP3 production which leads to an elevation in [Ca2+];. We propose that this cyclic AMP dependent activation of the IP3 generating system occurs at a post-receptor site.Abbreviations cAMP Adenosine Cyclic 3-5-Monophosphate - [Ca2+]i intracellular [Ca2+]i - 8 Br cAMP 8 Bromo Adenosine Cyclic 3-5-Monophosphate - DAG Diacylglycerol - EGTA] [Ethylene Bis (oxyethylenenitrilo)] Tetracetic acid - BSA Bovine Serum Albumin - HBSS-H Hanks' Balanced Salt Solution buffered with HEPES to pH 7.4 - HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid - PIP2 Phosphatidylinositol 4,5-bisphosphate - IP2 Inositol 4 Phosphate - IP2 Inositol 4,5 Bisphosphate - IP3 Inositol Trisphosphate - PGE1 Prostaglandin E1 - PBS Phosphate Buffered Saline Solution  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号