首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  国内免费   1篇
  2017年   1篇
  2015年   1篇
  2013年   4篇
  2011年   2篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  2000年   6篇
  1999年   1篇
  1998年   5篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1984年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有46条查询结果,搜索用时 859 毫秒
1.
Seaweed extract, prepared by alkaline extraction of Ascophyllum nodosum (L.) Le Jol., applied either to the soil or to the foliage of tomato plants, produced leaves with higher chlorophyll levels than those of control plants. The effects on leaf chlorophyll content were investigated using a cucumber bioassay procedure devised for cytokinins. The seaweed extract was shown to increase the chlorophyll levels of the cucumber cotyledons, but ‘peaks’ of activity were obtained when widely different concentrations were used. The possibility that these effects were the result of betaines present in the extract was considered. Glycinebetaine, γ-aminobutyric acid betaine and δ-aminovaleric acid betaine all produced significantly enhanced chlorophyll concentrations in the cotyledons. ‘Peaks’ of activity were observed for each betaine: for glycinebetaine at 10−6 and between 10−4 and 101 mg 1−1, for γ-aminobutyric acid betaine at 10−6, between 10−4 and 10−1, and 101 mg 1−1, and for δ-aminovaleric acid betaine between 10−5 and 101 mg 1−1. It was concluded that the effects of enhancing chlorophyll levels produced by the seaweed extract were due, at least in part, to betaines.  相似文献   
2.
Abstract Polysomes and ribosomes recovered from a number of plant species were tested for stability when incubated at 25°C in salt solutions in the absence of ATP and initiation factors. Stability was assessed by sucrose density gradient analysis. The stability was inversely proportional to salt concentrations above 125 mol m−3 KCl. Polysomes were less stable in the presence of Na+ than K+ salts, and were much less stable in Cl than in acetate salts. Polysomes from Triticum aestivum. Hordeum vulgare, Capsicum annuum, Helianthus annuus. Pisum sativum, Atriplex nummularia, Beta vulgaris, Cladophora sp., Enteromorpha sp. and Corallina cuvieri were similarly sensitive to KCl. Polysomes from Ulva lactuca were more sensitive than the other species. Cytoplasmic and plastid polysomes from T. aestivum were similarly unstable in 500 mol m−3 KCl. Unprogrammed ribosomal subunit couples from T. aestivum, B. vulgaris and U. lactuca showed Mg2+-dependent conformational instability and dissociation in KCl. Slight differences in ribosomal stability were observed between species, but these were unrelated to the salt tolerances of the plants. The ‘compatible’ organic solutes, glycinebetaine and proline, failed to reduce ion-induced instability. Ribosome yield and polysome profiles were similar in leaves of B. vulgaris containing significantly different levels of both Na+ and Cl after growth in media containing 50 or 200 mol m−3 NaCl. The results are consistent with the hypothesis that plants maintain a cytoplasmic solute environment that is compatible with ribosomal stability.  相似文献   
3.
Existence of an acetyltransferase, which catalizes acetylation of deacetylcephalosporin C to cephalosporin C, was demonstrated for the first time in cell-free extracts of Cephalosporium acremonium. The pH optimum of the enzyme appeared to be 7.0 to 7.5 and the enzyme required essentially Mg2+ as a cofactor for its reaction. The activity of this enzyme was not observed in the cell-free extracts of deacetylcephalosporin C-producing mutants Nos. 20, 29, 36 and 40, but was recovered in a revertant obtained from the mutant No. 40. These results indicate that deacetylcephalosporin C accumulation by these mutants was due to the lack of the acetyltransferase and made it reasonable that the terminal reaction of cephalosporin C biosynthesis in Cephalosporium acremonium proceeded by the catalytic action of acetyltransferase.  相似文献   
4.
This report describes the first successful genetic engineering of tolerance to salt in an agriculturally important species of woody plants by Agrobacterium-mediated transformation with the codA gene of Arthrobacter globiformis. This gene encodes choline oxidase, which catalyzes the oxidation of choline to glycinebetaine. The binary plasmid vector pGC95.091, containing a kanamycin-resistance gene (nptII), a gene for -glucuronidase (gusA) and the codA gene in its T-DNA region, was used with a disarmed strain of Agrobacterium tumefaciens, EHA101, to transform Japanese persimmon (Diospyros kaki Thunb. `Jiro') by the leaf disk transformation method. The pRS95.101 plasmid that included only nptII and gusA in the T-DNA region was used as a control. We selected eight transgenic lines with one or two copies of the T-DNA after transformation with pGC95.091 (PC lines) and three lines after transformation with pRS95.101 (PR lines). The eight PC lines produced choline oxidase and glycinebetaine whereas neither was found in untransformed `Jiro' and in the control PR lines. Transgenic plants grew normally, resembling wild-type plants both in vitro and ex vitro. The activity of photosystem II in leaves of the transgenic Japanese persimmon plants under NaCl stress was determined in terms of the ratio of the variable (F v) to the maximum (F m) fluorescence of chlorophyll (F v/F m). The rate of decline in (F v/F m under NaCl stress was lower in the PC lines than in the control PR lines. These results demonstrated that genetic engineering of Japanese persimmon, which allowed it to accumulate glycinebetaine, enhanced the tolerance to salt stress of this plant.  相似文献   
5.
以普通小麦品种‘轮选988’为材料,采用溶液培养法,研究了根施不同浓度甜菜碱(1.0、2.0、3.0、4.0、5.0、10.0、15.0、20.0mmol·L~(-1))对镍(100μmol·L~(-1) NiSO_4)胁迫下小麦根系生长的影响,以及4.0mmol·L~(-1)甜菜碱处理镍胁迫幼苗根系相关抗逆生理生化指标的变化。结果表明:(1)与不施加镍对照相比,镍胁迫下小麦幼苗的根长、株高、鲜重和干重分别显著降低了14.7%、11.7%、15.0%和16.7%。(2)与单独镍胁迫处理相比,小麦幼苗的根长、株高、鲜重和干重均随着根施甜菜碱的浓度逐渐增加且呈先升后降的趋势,并以4.0mmol·L~(-1)外源甜菜碱处理效果较佳。(3)与单独镍胁迫处理相比较,在4.0mmol·L~(-1)外源甜菜碱处理下,小麦幼苗根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性分别升高了284.7%、40.3%、82.9%和20.4%,超氧阴离子自由基(O-·2)含量、过氧化氢(H_2O_2)含量和丙二醛(MDA)含量分别显著降低了50.6%、38.4%和40.6%,可溶性糖含量及游离脯氨酸(Pro)含量分别显著降低了19.2%、45.4%,而根系活力大幅上升了358.0%。研究认为,根施适宜浓度外源甜菜碱可显著增强小麦幼苗根系的抗氧化能力,恢复根系活力,从而有效减弱镍胁迫对小麦幼苗生长的伤害。  相似文献   
6.
Chilling tolerance was increased in suspension‐cultured cells and seedlings of maize (Zea mays L. cv ‘Black Mexican Sweet’) grown in media containing glycinebetaine (GB). A triphenyl tetrazolium chloride (TTC) reduction test indicated that after a 7 d chilling period at 4 °C, cells treated with 1 mm GB at 26 °C for 1 d had a survival rate (30%) that was twice as high as that of untreated controls. The addition of 2·5 m M GB to the culture medium resulted in maximum chilling tolerance (40%). The results of a cell regrowth assay were consistent with viability determined by the TTC method. In suspension‐cultured cells supplemented with various concentrations of GB, accumulation of GB in the cells was proportional to the GB concentration in the medium and was saturated at a concentration of 240 μ mol (g DW) ? 1. The degree of increased chilling tolerance was positively correlated with the level of GB accumulated in the cells. The increased chilling tolerance was time‐dependent; i.e. it was first observed 3 h after treatment and reached a plateau after 14 h. Feeding seedlings with 2·5 m M GB through the roots also improved their chilling tolerance, as evidenced by the prevention of chlorosis after chilling for 3 d at 4 °C/2 °C. Lipid peroxidation, as expressed by the production of malondialdehyde, was significantly reduced in GB‐treated cells compared with the untreated controls during chilling. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation of the cell membranes in the presence of GB.  相似文献   
7.
Genetically engineered rice (Oryza sativa L.) with the ability to synthesize glycinebetaine was established by introducing the codA gene for choline oxidase from the soil bacterium Arthrobacter globiformis. Levels of glycinebetaine were as high as 1 and 5 mol per gram fresh weight of leaves in two types of transgenic plant in which choline oxidase was targeted to the chloroplasts (ChlCOD plants) and to the cytosol (CytCOD plants), respectively. Although treatment with 0.15 m NaCl inhibited the growth of both wild-type and transgenic plants, the transgenic plants began to grow again at the normal rate after a significantly less time than the wild-type plants after elimination of the salt stress. Inactivation of photosynthesis, used as a measure of cellular damage, indicated that ChlCOD plants were more tolerant than CytCOD plants to photoinhibition under salt stress and low-temperature stress. These results indicated that the subcellular compartmentalization of the biosynthesis of glycinebetaine was a critical element in the efficient enhancement of tolerance to stress in the engineered plants.  相似文献   
8.
根施甜菜碱对水分胁迫下烟草幼苗光合机构的保护   总被引:7,自引:0,他引:7  
以烟草品种大黄金5210(抗旱性强)和中烟100(抗旱性弱)为材料,研究了水分胁迫对烟草叶片光合机构的影响,并通过根部施用甜菜碱的方法,探讨了甜菜碱对烟草光合机构的保护作用。结果表明:水分胁迫导致烟草幼苗光合机构损伤,表现在叶绿素含量、PSII光化学效率、希尔反应活力以及类囊体膜ATPase活性下降,且对抗旱性弱的中烟100损伤更加严重。外源甜菜碱处理减轻了水分胁迫对以上指标的降低程度,特别是对干旱敏感型烟草品种中烟100的效果更加明显。甜菜碱的这种保护作用可能与它能够维持叶片中各种抗氧化酶活性、减轻活性氧的积累、保护类囊体膜上各种色素蛋白的功能以及缓解水分胁迫对膜的破坏作用有关。  相似文献   
9.
Threeextrinsicpolypeptides,whicharelocatedontheinnersurfaceofthylakoidmembrane,playessentialrolesinmaintainingthephotosyntheticevolutionofoxygen.Theyaregenerallyrecognizedasliablecomponentsofthephotosyntheticapparatus,andcanbereleasedbyavarietyofphysic…  相似文献   
10.
Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity.Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas.Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号