首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   26篇
  国内免费   9篇
  2023年   5篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   8篇
  2018年   1篇
  2017年   12篇
  2016年   11篇
  2015年   6篇
  2014年   13篇
  2013年   10篇
  2012年   9篇
  2011年   10篇
  2010年   15篇
  2009年   14篇
  2008年   24篇
  2007年   22篇
  2006年   28篇
  2005年   13篇
  2004年   21篇
  2003年   18篇
  2002年   15篇
  2001年   8篇
  2000年   23篇
  1999年   13篇
  1998年   12篇
  1997年   10篇
  1996年   20篇
  1995年   16篇
  1994年   18篇
  1993年   7篇
  1992年   21篇
  1991年   13篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   7篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有469条查询结果,搜索用时 16 毫秒
1.
2.
Granule cells were dissociated from rat cerebella with a procedure that yields a 98% pure cell population. Potassium currents in these cells were studied using the patch-clamp technique. Depolarizing pulses of 10 mV step and 100 ms duration from a holding potential of –80 mV elicited two different potassium outward currents: a transient, low-voltage activated component and a long lasting, high-voltage activated component. At +30 mV, the total current reached an amplitude of 2 nA (mean value of 15 experiments). The reversal potential of the transient current, estimated by measuring tail currents, was –77 mV, close to that predicted by the Nernst equation. The transient current was half inactivated with a holding potential of –78 mV and completely inactivated with –50 mV or more positive holding potentials. Finally, the current decay could be fitted by the sum of two exponentials with time constants of about 20 and 250 ms.  相似文献   
3.
The time constant of the process producing the delay in Na inactivation development as determined by the two pulse method (delay) was extracted and compared to that of the slowest Na activation process 3 for the I Na during the conditioning pulse of that same determination. delay and two pulse inactivation c values were computer generated using a nonlinear least squares algorithm. h and single pulse inactivation h values were independently generated for each determination also with the aid of the computer using the same non-linear least squares algorithm. In one determination at 2 mV, c was 4.68 and delay 0.494 ms while h was 4.70 and 3 0.491 ms for a c/h of 0.996 and a delay/3 of 1.006. Mean delay/3 from five determinations in four axons, both Cs and K perfused, and spanning a potential range of-27 to 2mV was 1.068. The precursor process to inactivation is channel opening. Some fraction of channels presumably inactivate via another route where prior channel opening is not required.  相似文献   
4.
Abstract Growing roots of Nicotiana tabacum var. Havana generate transcellular ion currents which traverse developing and wounded tissues. Positive current of around 10 mA m?2 enters meristematic and elongating cells at the tip of primary roots. The growing tips of first order laterals are also traversed by a similar positive current with a density of around 2.0 mA m?2, as are immature laterals emerging at the primary root surface. These self-generated ion currents flow basipetally through developing tissues and leave from mature non-elongating tissue. A large positive current of around 70 mA m?2 also enters induced wound sites on the primary root surface. Motile zoospores of the fungal pathogen Phytophthora parasitica var. nicotianae have been reported to associate preferentially with these regions of the root. This might suggest that electrotaxis may be part of the mechanism by which zoospores locate root regions susceptable to fungal infection.  相似文献   
5.
Electric fields induced in a conductive body by the magnetic field of a current-carrying wire were analyzed theoretically and experimentally to assess the dosimetric importance of highly nonuniform, field-exposure conditions. Experimentation revealed that a 60-Hz magnetic field was inversely proportional to the radius of a wire bundle carrying 100 A within a 0.5-m2 test area. A miniaturized electric field probe was used to measure the electric fields induced in 5-cm-deep, saline-filled models. In the theoretical analysis, numerical estimates of induced fields were made by a spreadsheet method. The theoretical calculations and the measured values of induced electric fields were generally in good agreement. The induced fields were in a plane perpendicular to a vertically incident magnetic field; the maximally induced fields were in areas nearest the wire bundle. The strength of the induced field increased with model size: from 96 microV/cm in a 10 x 10 cm model to 176 microV/cm in a 40 x 40 cm model. The strength of the field induced in a 20 x 20 cm model decreased with increasing model-to-wire spacing: from 132 microV/cm for a 1-cm spacing (2-mT maximum, incident field) to 50 microV/cm for a 6-cm spacing (0.33-mT maximum). The results indicate that increases in local values of nonuniformly incident fields produce relatively small increases in induced electric fields. This finding may be important in dosimetric consideration of circumstances, such as use of electric blankets, in which fields of low average strength are accompanied by intense local fields.  相似文献   
6.
Summary Agapanthus umbelatus pollen tubes (PTs) display a number of different growth patterns when germinated in an electric field of 750 mV· mm–1. When pollen is germinated near the cathode (82.44% of orientation to the cathode side) or near the anode (55.35% of orientation to the anode), growth is oriented parallel to the applied field but when germinated at an intermediate position, there is random growth. An increase and decrease in the orientation rates as well as reversion of the polarized growth were observed when the growth conditions were systematically altered. These findings reflect the influence of different ionic currents present in the germination medium. These ionic currents induce the formation of ionic gradients, which were monitored by ion-HPLC. The individual omission of Ca2+, K+, Mg2+ and Cl suppresses or alters the oriented growth pattern. The presence of ionic gradients is not by itself suficient to trigger the polarization of tube growth as the presence of an electric field which drives the ionic currents is essential for this to occur.Abbreviations PT Pollen tube - DNS 3,5-dinitro salycilic acid; - TP transient polarization - HPLC high precision liquid chroma tography - DC direct current  相似文献   
7.
Using the whole-cell configuration of the patch-clamp technique, we studied the conditions necessary for the activation of Cl-currents in retinal pigment epithelial (RPE) cells from rats with retinal dystrophy (RCS) and nondystrophic control rats. In RPE cells from both rat strains, intracellular application of 10 μm inositol-1,4,5-triphosphate (IP3) via the patch pipette led to a sustained activation of voltage-dependent Cl currents, blockable by 1 mm 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). IP3 activated Cl currents in the presence of a high concentration of the calcium chelator BAPTA (10 mm) in the pipette solution, but failed to do so when extracellular calcium was removed. Intracellular application of 10−5 m Ca2+ via the patch pipette also led to a transient activation of Cl currents. When the cells were preincubated in a bath solution containing thapsigargin (1 μm) for 5 min before breaking into the whole-cell configuration, IP3 failed to activate voltage-dependent currents. Thus, IP3 led to release of Ca2+ from cytosolic calcium stores. This in turn activated an influx of extracellular calcium into the submembranal space by a mechanism as yet unknown, leading to an activation of calcium-dependent chloride currents. In RPE cells from RCS rats, which show an increased membrane conductance for calcium compared to normal rats, we observed an accelerated speed of Cl-current activation induced by IP3 which could be reduced by nifedipine (1 μm). Thus, the increased membrane conductance to calcium in RPE cells from RCS rats changes the response of the cell to the second messenger IP3. Received: 17 July 1995/Revised: 31 January 1996  相似文献   
8.
9.
Electrochemical data obtained with TMPD+-sensitive electrodes indicate that ammonium-uncoupled chloroplasts retain TMPD (N,N,N',N'-tetramethyl- p -phenylenediamine) mainly in the reduced form during illumination, whereas uncoupled DCMU-treated chloroplasts accumulate TMPD in the oxidized form (TMPD+). This observation indicates that the reduced plastoquinol is the preferred electron donor for photosystem I (PSI) and TMPD can only compete efficiently when plastoquinone reduction is blocked. After adding DCMU the formation of a transmembrane gradient for TMPD+ is reflected by a slow-down of the electrogenic electron transport and by the emerging of the overshoot of the membrane current in the light-off response. A light-dependent increase in photoelectric current generated by chloroplasts in the presence of NH4Cl and TMPD is observed and considered to be caused by a reversible release of current limitation in the interfacial conductance barriers in the lumen.  相似文献   
10.
Summary 1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of –80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from –80 to –35 mV—Hg2+ showed some increased effectiveness in reducing this current.3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations µM.6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号