首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2020年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
As a highly potent and highly selective oral inhibitor of FLT3/AXL, gilteritinib showed activity against FLT3D835 and FLT3‐ITD mutations in pre‐clinical testing, although its role on colorectal cancer (CRC) cells is not yet fully elucidated. We examined the activity of gilteritinib in suppressing growth of CRC and its enhancing effect on other drugs used in chemotherapy. In this study, we observed that, regardless of p53 status, treatment using gilteritinib induces PUMA in CRC cells via the NF‐κB pathway after inhibition of AKT and activation of glycogen synthase kinase 3β (GSK‐3β). PUMA was observed to be vital for apoptosis in CRC cells through treatment of gilteritinib. Moreover, enhancing induction of PUMA through different pathways could mediate chemosensitization by using gilteritinib. Furthermore, PUMA deficiency revoked the antitumour role of gilteritinib in vivo. Thus, our results indicate that PUMA mediates the antitumour activity of gilteritinib in CRC cells. These observations are critical for the therapeutic role of gilteritinib in CRC.  相似文献   
2.
Recently, several targeted agents have been developed for specific subsets of patients with acute myeloid leukaemia (AML), including midostaurin, the first FDA-approved FLT3 inhibitor for newly diagnosed patients with FLT3 mutations. However, in the initial Phase I/II clinical trials, some patients without FLT3 mutations had transient responses to midostaurin, suggesting that this multi-targeted kinase inhibitor might benefit AML patients more broadly. Here, we demonstrate submicromolar efficacy of midostaurin in vitro and efficacy in vivo against wild-type (wt) FLT3-expressing AML cell lines and primary cells, and we compare its effectiveness with that of other FLT3 inhibitors currently in clinical trials. Midostaurin was found to synergize with standard chemotherapeutic drugs and some targeted agents against AML cells without mutations in FLT3. The mechanism may involve, in part, the unique kinase profile of midostaurin that includes proteins implicated in AML transformation, such as SYK or KIT, or inhibition of ERK pathway or proviability signalling. Our findings support further investigation of midostaurin as a chemosensitizing agent in AML patients without FLT3 mutations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号