首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Restriction site-associated DNA sequencing or genotyping-by-sequencing (GBS) approaches allow for rapid and cost-effective discovery and genotyping of thousands of single-nucleotide polymorphisms (SNPs) in multiple individuals. However, rigorous quality control practices are needed to avoid high levels of error and bias with these reduced representation methods. We developed a formal statistical framework for filtering spurious loci, using Mendelian inheritance patterns in nuclear families, that accommodates variable-quality genotype calls and missing data—both rampant issues with GBS data—and for identifying sex-linked SNPs. Simulations predict excellent performance of both the Mendelian filter and the sex-linkage assignment under a variety of conditions. We further evaluate our method by applying it to real GBS data and validating a subset of high-quality SNPs. These results demonstrate that our metric of Mendelian inheritance is a powerful quality filter for GBS loci that is complementary to standard coverage and Hardy–Weinberg filters. The described method, implemented in the software MendelChecker, will improve quality control during SNP discovery in nonmodel as well as model organisms.  相似文献   
2.
3.

Premise

Oceanic islands offer the opportunity to understand evolutionary processes underlying rapid diversification. Along with geographic isolation and ecological shifts, a growing body of genomic evidence has suggested that hybridization can play an important role in island evolution. Here we use genotyping-by-sequencing (GBS) to understand the roles of hybridization, ecology, and geographic isolation in the radiation of Canary Island Descurainia (Brassicaceae).

Methods

We carried out GBS for multiple individuals of all Canary Island species and two outgroups. Phylogenetic analyses of the GBS data were performed using both supermatrix and gene tree approaches and hybridization events were examined using D-statistics and Approximate Bayesian Computation. Climatic data were analyzed to examine the relationship between ecology and diversification.

Results

Analysis of the supermatrix data set resulted in a fully resolved phylogeny. Species networks suggest a hybridization event has occurred for D. gilva, with these results being supported by Approximate Bayesian Computation analysis. Strong phylogenetic signals for temperature and precipitation indicate one major ecological shift within Canary Island Descurainia.

Conclusions

Inter-island dispersal played a significant role in the diversification of Descurainia, with evidence of only one major shift in climate preferences. Despite weak reproductive barriers and the occurrence of hybrids, hybridization appears to have played only a limited role in the diversification of the group with a single instance detected. The results highlight the need to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups prone to hybridization; patterns that might otherwise be obscured in species trees.  相似文献   
4.
The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific noncrop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived single nucleotide polymorphisms for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that noncrop samples from the Caucasus, Siberia, and Italy may be truly wild, whereas those occurring in the Americas and much of Europe are feral. Clustering, tree-based analyses, and parameterized demographic inference further indicate that turnips were likely the first crop type domesticated, from which leafy types in East Asia and Europe were selected from distinct lineages. These findings clarify the domestication history and nature of wild crop genetic resources for B. rapa, which provides the first step toward investigating cases of possible parallel selection, the domestication and feralization syndrome, and novel germplasm for Brassica crop improvement.  相似文献   
5.
Soybean is globally cultivated primarily for its protein and oil. The protein and oil contents of the seeds are quantitatively inherited traits determined by the interaction of numerous genes. In order to gain a better understanding of the molecular foundation of soybean protein and oil content for the marker-assisted selection (MAS) of high quality traits, a population of 185 soybean germplasms was evaluated to identify the quantitative trait loci (QTLs) associated with the seed protein and oil contents. Using specific length amplified fragment sequencing (SLAF-seq) technology, a total of 12,072 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF)?≥?0.05 were detected across the 20 chromosomes (Chr), with a marker density of 78.7 kbp. A total of 31 SNPs located on 12 of the 20 soybean chromosomes were correlated with seed protein and oil content. Of the 31 SNPs that were associated with the two target traits, 31 beneficial alleles were identified. Two SNP markers, namely rs15774585 and rs15783346 on Chr 07, were determined to be related to seed oil content both in 2015 and 2016. Three SNP markers, rs53140888 on Chr 01, rs19485676 on Chr 13, and rs24787338 on Chr 20 were correlated with seed protein content both in 2015 and 2016. These beneficial alleles may potentially contribute towards the MAS of favorable soybean protein and oil characteristics.  相似文献   
6.
The future of plant cultivar improvement lies in the evaluation of genetic resources from currently available germplasm. Today’s gene pool of crop genetic diversity has been shaped during domestication and more recently by breeding. Recent efforts in plant breeding have been aimed at developing new and improved varieties from poorly adapted crops to suit local environments. However, the impact of these breeding efforts is poorly understood. Here, we assess the contributions of both historical and recent breeding efforts to local adaptation and crop improvement in a global barley panel by analysing the distribution of genetic variants with respect to geographic region or historical breeding category. By tracing the impact that breeding had on the genetic diversity of Hordeum vulgare (barley) released in Australia, where the history of barley production is relatively young, we identify 69 candidate regions within 922 genes that were under selection pressure. We also show that modern Australian barley varieties exhibit 12% higher genetic diversity than historical cultivars. Finally, field-trialling and phenotyping for agriculturally relevant traits across a diverse range of Australian environments suggests that genomic regions under strong breeding selection and their candidate genes are closely associated with key agronomic traits. In conclusion, our combined data set and germplasm collection provide a rich source of genetic diversity that can be applied to understanding and improving environmental adaptation and enhanced yields.  相似文献   
7.
Genotyping-by-sequencing (GBS) approaches provide low-cost, high-density genotype information. However, GBS has unique technical considerations, including a substantial amount of missing data and a nonuniform distribution of sequence reads. The goal of this study was to characterize technical variation using this method and to develop methods to optimize read depth to obtain desired marker coverage. To empirically assess the distribution of fragments produced using GBS, ∼8.69 Gb of GBS data were generated on the Zea mays reference inbred B73, utilizing ApeKI for genome reduction and single-end reads between 75 and 81 bp in length. We observed wide variation in sequence coverage across sites. Approximately 76% of potentially observable cut site-adjacent sequence fragments had no sequencing reads whereas a portion had substantially greater read depth than expected, up to 2369 times the expected mean. The methods described in this article facilitate determination of sequencing depth in the context of empirically defined read depth to achieve desired marker density for genetic mapping studies.  相似文献   
8.

Aim

We investigated the invasion history of Lycium ferocissimum, a spine-covered shrub native to South Africa that was introduced to Australia in the mid-1800s, and has since developed into a damaging invasive plant of undisturbed landscapes and pastures. In addition to identifying the provenance of the Australian plants, we tested for evidence of admixture, and contrasted genetic diversity and structuring across the native and introduced ranges.

Location

Samples were collected across South Africa (24 localities) and Australia (26 localities).

Methods

We used genotyping-by-sequencing (3117 SNPs across 381 individuals) to assess population genetic structuring in L. ferocissimum across Australia and South Africa. Coalescent analyses were used to explicitly test contrasting invasion scenarios.

Results

Clear geographic genetic structuring was detected across South Africa, with distinct clusters in the Eastern and Western Cape provinces. The L. ferocissimum plants in Australia form their own genetic cluster, with a similar level of genetic diversity as plants in South Africa. Coalescent analyses demonstrated that the lineage in Australia was formed by admixture between Eastern Cape and Western Cape plants, with most of the genetic material from the Australian lineage originating from the Western Cape. Our analyses suggest that L. ferocissimum plants were originally introduced to South Australia, though it is unclear whether admixture occurred before or after its introduction to Australia. We detected little evidence of geographic genetic structure across Australia, although many of the populations were genetically distinct from one another.

Main Conclusions

Our results illustrate how admixture can result in genetically diverse and distinct invasive populations. The complex invasion history of L. ferocissimum in Australia poses particular challenges for biological control. We suggest potential biological control agents should be screened against admixed plants (in addition to plants from the Eastern and Western Cape) to test whether they provide effective control of the genetically distinct invasive lineage.  相似文献   
9.
Clubroot is a devastating disease caused by Plasmodiophora brassicae and results in severe losses of yield and quality in Brassica crops. Many clubroot resistance genes and markers are available in Brassica rapa but less is known in Brassica oleracea. Here, we applied the genotyping-by-sequencing (GBS) technique to construct a high-resolution genetic map and identify clubroot resistance (CR) genes. A total of 43,821 SNPs were identified using GBS data for two parental lines, one resistant and one susceptible lines to clubroot, and 18,187 of them showed >5× coverage in the GBS data. Among those, 4,103 were credibly genotyped for all 78 F2 individual plants. These markers were clustered into nine linkage groups spanning 879.9 cM with an average interval of 1.15 cM. Quantitative trait loci (QTLs) survey based on three rounds of clubroot resistance tests using F2 : 3 progenies revealed two and single major QTLs for Race 2 and Race 9 of P. brassicae, respectively. The QTLs show similar locations to the previously reported CR loci for Race 4 in B. oleracea but are in different positions from any of the CR loci found in B. rapa. We utilized two reference genome sequences in this study. The high-resolution genetic map developed herein allowed us to reposition 37 and 2 misanchored scaffolds in the 02–12 and TO1000DH genome sequences, respectively. Our data also support additional positioning of two unanchored 3.3 Mb scaffolds into the 02–12 genome sequence.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号