首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7689篇
  免费   926篇
  国内免费   705篇
  9320篇
  2024年   31篇
  2023年   297篇
  2022年   376篇
  2021年   522篇
  2020年   444篇
  2019年   518篇
  2018年   396篇
  2017年   381篇
  2016年   334篇
  2015年   443篇
  2014年   567篇
  2013年   555篇
  2012年   358篇
  2011年   313篇
  2010年   239篇
  2009年   325篇
  2008年   322篇
  2007年   332篇
  2006年   327篇
  2005年   316篇
  2004年   285篇
  2003年   279篇
  2002年   213篇
  2001年   164篇
  2000年   142篇
  1999年   108篇
  1998年   94篇
  1997年   81篇
  1996年   58篇
  1995年   66篇
  1994年   63篇
  1993年   57篇
  1992年   47篇
  1991年   36篇
  1990年   27篇
  1989年   25篇
  1988年   36篇
  1987年   18篇
  1986年   19篇
  1985年   28篇
  1984年   19篇
  1983年   14篇
  1982年   12篇
  1981年   7篇
  1980年   4篇
  1979年   8篇
  1978年   6篇
  1977年   3篇
  1972年   1篇
  1950年   3篇
排序方式: 共有9320条查询结果,搜索用时 15 毫秒
1.
A new brain protein is described which forms an insoluble complex with tubulin, with concomitant stoichiometric hydrolysis of GTP. The complex contains a maximum of one tubulin-binding protein (MW 52,500) per two tubulin dimers. The tubulin-binding protein (TBP) does not compete with colchicine, but in the presence of microtubule-associated proteins tubulin appeared less accessible to it. Proteins such as TBP might sequester tubulin and thereby function either to inhibit indiscriminate polymerization, or to promote ordered nucleation by maintaining high local concentrations.  相似文献   
2.
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms.  相似文献   
3.
Species loss leads to community closure   总被引:1,自引:0,他引:1  
Global extinction of a species is sadly irreversible. At a local scale, however, extinctions may be followed by re-invasion. We here show that this is not necessarily the case and that an ecological community may close its doors for re-invasion of species lost from it. Previous studies of how communities are assembled have shown that there may be rules for that process and that limitations are set to the order by which species are introduced and put together. Instead of focusing on the assembly process we randomly generated simple competitive model communities that were stable and allowed for two to 10 coexisting species. When a randomly selected single species was removed from the community, the cascading species loss was recorded and frequently the resulting community was more than halved. Cascading extinctions have previously been recorded, but we here show that the relative magnitude of the cascade is dependent on community size (and not only trophic structure) and that the reintroduction of the original species lost often is impossible. Hence, species loss does not simply leave a void potentially refilled, but permanently alters the entire community structure and consequently the adaptive landscape for potential re-invaders.  相似文献   
4.
5.
Random amplified polymorphic DNA (RAPD) markers are used to estimate interspecific variation among mangrove and non-mangrove Heritiera fomes, H. littoralis and H. macrophylla. All the species have 2n = 38 chromosomes, with minute structural changes distinguishing the karyotype of each species. Significant variation of 4C DNA content occurs at the interspecific level. Interspecific polymorphism ranged from 14.09% between H. fomes and H. littoralis to 52.73% between H. fomes and H. macrophylla. H. macrophylla showed wide polymorphism in the RAPD marker with H. littoralis (51.23%) and H. fomes (52.73%). Two distinct RAPD products obtained from OPA-10 (1000 bp) and OPD-15 (900 bp) found characteristic molecular markers in H. macrophylla , a species from a non-mangrove habitat. H. macrophylla was more distantly related to H. fomes [genetic distance (1-F) = 0.305] than to H. littoralis [genetic distance (1-F) = 0.273]. H. littoralis was of a closer affinity to H. fomes [genetic distance (1-F) = 0.218] than to H. macrophylla.  相似文献   
6.
The CD genome species in the genus Oryza are endemic to Latin America, including O. alta, O. grandiglumis and O. latifolia. Origins and phylogenetic relationship of these species have long been in dispute and are still ambiguous due to their homogeneous genome type, similar morphological characteristics and overlapping distribution. In the present study, we sequenced two chloroplast fragments (matK and trnL-trnF) and portions of three nuclear genes (Adh1, Adh2 and GPA1) from sixteen accessions representing seven species with the C, CD, and E genomes, as well as one G genome species as the outgroup. Phylogenetic analyses using parsimony and distance methods strongly supported that the CD genome originated from a single hybridization event, and that the C genome species (O. officinalis or O. rhizomatis instead of O. eichingeri) served as the maternal parent while the E genome species (O. australiensis) was the paternal donor during the formation of CD genome. In addition, the consistent phylogenetic relationships among the CCDD species indicated that significant divergence existed between O. latifolia and the other two (O. alta and O. grandiglumis), which corroborated the suggestion of treating the latter two as a single species or as taxa within species.We thank Tao Sang of Michigan State University (East Lansing, USA) and Bao-rong Lu of Fudan University (Shanghai, China) for their encouragement and assistance. We are also grateful to the International Rice Research Institute (Manila, Philippines) for providing plant material for this study. This research was supported by the Chinese Academy of Sciences (kscxz-sw-101A), the National Natural Science Foundation of China (30025005) and the Program for Key International S & T Cooperation Project of P. R. China (2001CB711103).  相似文献   
7.
Diamond (Assembly of species communities. In: Cody ML, Diamond JM, editors. Ecology and evolution of communities. Cambridge: Belknap. p 342–444 ( 1975 )) argued that interspecific competition between species occupying similar niches results in a nonrandom pattern of species distributions. In particular, some species pairs may never be found in the same community due to competitive exclusion. Rigorous analytical methods have been developed to investigate the possible role that interspecific competition has on the evolution of communities. Many studies that have implemented these methods have shown support for Diamond's assembly rules, yet there are numerous exceptions. We build on this previous research by examining the co‐occurrence patterns of primate species in 109 communities from across the world. We used EcoSim to calculate a checkerboard (C) score for each region. The C score provides a measure of the proportion of species pairs that do not co‐occur in a set of communities. High C scores indicate that species are nonrandomly distributed throughout a region, and interspecific competition may be driving patterns of competitive exclusion. We conducted two sets of analyses. One included all primate species per region, and the second analysis assigned each species to one of four dietary guilds: frugivores, folivores, insectivores, and frugivore‐insectivores. Using all species per region, we found significantly high C scores in 9 of 10 regions examined. For frugivores, we found significantly high‐C scores in more than 50% of regions. In contrast, only 23% of regions exhibited significantly high‐C scores for folivores. Our results suggest that communities are nonrandomly structured and may be the result of greater levels of interspecific competition between frugivores compared to folivores. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
8.
9.
Analysis of the patterns and levels of diversity in duplicate gene not only traces evolutionary history of polyploids, but also provides insight into how the evolutionary process differs between lineages and between homoeologous loci within lineages. Elymus sensu lato is a group of allopolyploid species, which share a common St genome and with the different combinations of H, Y, P, and W genomes. To estimate the evolutionary process of the rbcL gene in species of Elymus s. l. and its putative dioploid relatives, 74 sequences were obtained from 21 species of Elymus s. l. together with 24 diploid taxa representing 19 basic genomes in Triticeae. Phylogeny and sequence diversity pattern analysis suggested that (1) species of Pseudoroegneria (Nevski) Á. Löve might serve as the maternal donor of the species of Elymus s. l; (2) differentiation of St genome were shown in the species of Elymus s. l. following polyploidy event; (3) divergences within the species might associate with geographic diversity and morphological variability; (4) differences in the levels and patterns of nucleotide diversity of the rbcL gene implied that the St genome lineages in the species of Elymus s. l. have differently evolutionary potentials.  相似文献   
10.
The complete nucleotide sequence of the mitochondrial (mt) genome was determined for specimens of the coral species Montipora cactus (Bernard 1897) and Anacropora matthai (Pillai 1973), representing two morphologically distinct genera of the family Acroporidae. These sequences were compared with the published mt genome sequence for the confamilial species, Acropora tenuis (Dana 1846). The size of the mt genome was 17,887 bp and 17,888 bp for M. cactus and A. matthai. Gene content and organization was found to be very similar among the three Acroporidae mt genomes with a group I intron occurring in the NADH dehyrogenase 5 (nad5) gene. The intergenic regions were also similar in length among the three corals. The control region located between the small ribosomal RNA (ms) and the cytochrome oxidase 3 (cox3) gene was significantly smaller in M. cactus and A. matthai (both 627 bp) than in A. tenuis (1086 bp). Only one set of repeated sequences was identified at the 3′-end of the control regions in M. cactus and A. matthai. A lack of the abundant repetitive elements which have been reported for A. tenuis, accounts for the relatively short control regions in M. cactus and A. matthai. Pairwise distances and relative rate analyses of 13 protein coding genes, the group I intron and the largest intergenic region, igr3, revealed significant differences in the rate of molecular evolution of the mt genome among the three species, with an extremely slow rate being seen between Montipora and Anacropora. It is concluded that rapid mt genome evolution is taking place in genus Acropora relative to the confamilial genera Montipora and Anacropora although all are within the relatively slow range thought to be typical of Anthozoa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号