首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   42篇
  国内免费   42篇
  2024年   1篇
  2023年   14篇
  2022年   12篇
  2021年   11篇
  2020年   15篇
  2019年   15篇
  2018年   19篇
  2017年   14篇
  2016年   18篇
  2015年   17篇
  2014年   25篇
  2013年   40篇
  2012年   19篇
  2011年   25篇
  2010年   7篇
  2009年   19篇
  2008年   23篇
  2007年   12篇
  2006年   23篇
  2005年   16篇
  2004年   8篇
  2003年   10篇
  2002年   5篇
  2001年   11篇
  2000年   7篇
  1999年   8篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有419条查询结果,搜索用时 586 毫秒
1.
The potato has tremendous potential as a transgenic crop and is a good model system by which to analyse metabolic regulation and gene expression. The potato’s difficult genetics, but ease of genetic transformation and its clonal means of propagation make it ideal for applied agricultural molecular genetics. Thus, the next 4 years promise to put the potato (with a diversity of transgenic constructs expressed) in the limelight as many of the first transgenic agricultural products enter the marketplace.  相似文献   
2.
3.
单链抗体(single chain antibody fragment,scFv)是由抗体重链可变区(variable region of heavy chain,VH)和轻链可变区(variable region of light chain,VL)通过柔性短肽连接组成的小分子,是具有完整抗原结合活性的最小功能片段,包含抗体识别及抗原结合部位。相比于其他抗体,scFv具有分子量小、穿透性强、免疫原性弱、易构建表达等优点。目前,scFv最常用的展示系统主要有噬菌体展示系统、核糖体展示系统、mRNA展示系统、酵母细胞表面展示系统和哺乳动物细胞展示系统等。近年来,随着scFv在医学、生物学、食品安全学等领域的发展,使得其在生物合成和应用研究方面备受关注。本文对近年来scFv展示系统的研究进展作一综述,以期为scFv的筛选及应用提供理论基础。  相似文献   
4.
转基因玉米是最重要的转基因主粮作物之一,其转基因技术具有一定的代表性。为了更好地了解和掌握玉米转基因技术领域研发主体合作情况,文章构建了基于专利权人合作网络的目标技术领域专利权人合作态势分析框架,并基于社会网络分析方法与技术,以世界范围内的转基因玉米领域的重要专利权人为分析对象,构建合作网络、分析整体合作特征、挖掘合作子网、探测领域内重要专利权人,从而从宏观、中观和微观三个层面客观展现玉米转基因技术领域专利权人合作态势,为科技战略规划提供一定的决策支撑。  相似文献   
5.
转基因耐除草剂玉米G1105E-823C是经过改造的转mG2-aroA基因耐草甘膦玉米新品系,具有更高的草甘膦耐受性,目前已完成生产性试验,具有重要的产业化应用前景。但目前尚无针对G1105E-823C的转化体特异性检测方法的相关报道,这十分不利于对该品系的检测及监管。基于此,以G1105E-823C转化体特异性序列为靶标,建立了转基因耐除草剂玉米G1105E-823C的普通PCR和实时荧光PCR定性检测方法。结果表明,2种方法均能检测出转基因耐除草剂玉米G1105E-823C转化体成分,且具有较高的特异性。普通PCR检测方法检出限达0.1%,实时荧光PCR检测方法检出限达0.05%。研究建立的2种定性检测方法为转基因耐除草剂玉米G1105E-823C的精准检测提供了新的技术手段,可为农业转基因监管提供技术支撑。  相似文献   
6.
Genetic and epigenetic alterations are essential for the initiation and progression of human cancer. We previously reported that primary human medulloblastomas showed extensive cancer-specific CpG island DNA hypermethylation in critical developmental pathways. To determine whether genetically engineered mouse models (GEMMs) of medulloblastoma have comparable epigenetic changes, we assessed genome-wide DNA methylation in three mouse models of medulloblastoma. In contrast to human samples, very few loci with cancer-specific DNA hypermethylation were detected, and in almost all cases the degree of methylation was relatively modest compared with the dense hypermethylation in the human cancers. To determine if this finding was common to other GEMMs, we examined a Burkitt lymphoma and breast cancer model and did not detect promoter CpG island DNA hypermethylation, suggesting that human cancers and at least some GEMMs are fundamentally different with respect to this epigenetic modification. These findings provide an opportunity to both better understand the mechanism of aberrant DNA methylation in human cancer and construct better GEMMs to serve as preclinical platforms for therapy development.  相似文献   
7.
Digestion in insects is a multi-step process to afford nutritional requirements of biological activities. The process starts with nervous stimuli and continues with biochemical activities of digestive enzymes as well as several pumps to digest and absorb the obtained molecules. Carbohydrases, lipases and proteases are the three main digestive enzymes involved in digestion process. Lipases seem to be very important not only for digestive role but also for esteratic activity so that some experts consider lipases as the Class 3 of general esterases. Digestive lipases divided into different groups based on their biological roles namely triacylglycerol lipases, phospholipases and two types of phosphatases. Briefly, triacylglycerol lipases (TAG-lipases) are the hydrolysing enzymes that affect the outer esteric links of triacylglycerols in ingested food. Phospholipases including PLA2 and PLA1 remove phosphatide fatty acids attached to the Position 2 and Position 1. Finally, Alkaline and acid phosphatases are the enzymes that hydrolyse phosphomonoesters under alkaline or acid conditions, respectively. In this review, presence and physiological role of digestive TAG-lipases are explained and their possible importance will be discussed in insect.  相似文献   
8.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
9.
Vascular plants have lignified tissues that transport water, minerals, and photosynthetic products throughout the plant. They are the dominant primary producers in terrestrial ecosystems and capture significant quantities of atmospheric carbon dioxide (CO2) through photosynthesis. Some of the fixed CO2 is respired by the plant directly, with additional CO2 lost from rhizodeposits metabolized by root-associated soil microorganisms. Microbially-mediated mineralization of organic nitrogen (N) from plant byproducts (rhizodeposits, dead plant residues) followed by nitrification generates another greenhouse gas, nitrous oxide (N2O). In anaerobic soils, reduction of nitrate by microbial denitrifiers also produces N2O. The plant-microbial interactions that result in CO2 and N2O emissions from soil could be affected by genetic modification. Down-regulation of genes controlling lignin biosynthesis to achieve lower lignin concentration or a lower guaiacyl:syringyl (G:S) ratio in above-ground biomass is anticipated to produce forage crops with greater digestibility, improve short rotation woody crops for the wood-pulping industry and create second generation biofuel crops with low ligno-cellulosic content, but unharvested residues from such crops are expected to decompose quickly, potentially increasing CO2 and N2O emissions from soil. The objective of this review are the following: 1) to describe how plants influence CO2 and N2O emissions from soil during their life cycle; 2) to explain how plant residue chemistry affects its mineralization, contributing to CO2 and N2O emissions from soil; and 3) to show how modification of plant lignin biosynthesis could influence CO2 and N2O emissions from soil, based on experimental data from genetically modified cell wall mutants of Arabidopsis thaliana. Conceptual models of plants with modified lignin biosynthesis show how changes in phenology, morphology and biomass production alter the allocation of photosynthetic products and carbon (C) losses through rhizodeposition and respiration during their life cycle, and the chemical composition of plant residues. Feedbacks on the soil environment (mineral N concentration, soil moisture, microbial communities, aggregation) affecting CO2 and N2O emissions are described. Down-regulation of the Cinnamoyl CoA Reductase 1 (CCR1) gene is an excellent target for highly digestable forages and biofuel crops, but A. thaliana with this mutation has lower plant biomass and fertility, prolonged vegetative growth and plant residues that are more susceptible to biodegradation, leading to greater CO2 and N2O emissions from soil in the short term. The challenge in future crop breeding efforts will be to select tissue-specific genes for lignin biosynthesis that meet commercial demands without compromising soil CO2 and N2O emission goals.  相似文献   
10.
Feeding studies on rice genetically modified with soybean glycinin were performed on rats for four weeks. The rats were divided into three groups, each being fed on (I) only a commercial diet, (II) this diet plus control rice and (III) this diet plus rice genetically modified with glycinin. The rats were fed with 10 g/kg-weight of rice every day by oral administration. During the test period, the rats in every group grew well without marked differences in appearance, food intake, body weight, or cumulative body weight gain. There were also no significant differences in the blood count, blood composition or internal organ weights among the rats. Necropsy at the end of the experiment indicated neither pathological symptoms nor histopathological abnormalities in the liver and kidney. Judging from these results, the rice genetically modified with glycinin is considered to have been essentially the same in nutritional and biochemical characteristics as the control rice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号