首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   12篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1982年   6篇
  1981年   7篇
  1976年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
1.
Summary In the epithelium of rabbit gallbladder, in the nominal absence of bicarbonate, intracellular Cl activity is about 25mm, about 4 times higher than intracellular Cl activity at the electrochemical equilibrium. It is essentially not affected by 10–4 m acetazolamide and 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) even during prolonged exposures; it falls to the equilibrium value by removal of Na+ from the lumen without significant changes of the apical membrane potential difference. Both intracellular Cl and Na+ activities are decreased by luminal treatment with 25mm SCN; the initial rates of change are not significantly different. In addition, the initial rates of change of intracellular Cl activity are not significantly different upon Na+ or Cl entry block by the appropriate reduction of the concentration of either ion in the luminal solution. Luminal K+ removal or 10–5 m bumetanide do not affect intracellular Cl and Na+ activities or Cl influx through the apical membrane. It is concluded that in the absence of bicarbonate NaCl entry is entirely due to a Na+–Cl symport on a single carrier which, at least under the conditions tested, does not cotransport K+.  相似文献   
2.
Summary Cl influx at the luminal border of the epithelium of rabbit gallbladder was measured by 45-sec exposures to36Cl and3H-sucrose (as extracellular marker). Its paracellular component was evaluated by the use of 25mm SCN which immediately and completely inhibits Cl entry into the cell. Cellular influx was equal to 16.7eq cm–2 hr–1 and decreased to 8.5eq cm–2 hr–1 upon removal of HCO 3 from the bathing media and by bubbling 100% O2 for 45 min. When HCO 3 was present, cellular influx was again about halved by the action of 10–4 m acetazolamide, 10–5 to 10–4 m furosemide, 10–5 to 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS), 10–3 m amiloride. The effects of furosemide and SITS were tested at different concentrations of the inhibitor and with different exposure times: they were maximal at the concentrations reported above and nonadditive. In turn, the effects of amiloride and SITS were not additive. Acetazolamide reached its maximal action after an exposure of about 2 min. When exogenous HCO 3 was absent, the residual cellular influx was insensitive to acetazolamide, furosemide and SITS. When exogenous HCO 3 was present in the salines, Na+ removal from the mucosal side caused a slow decline of cellular Cl influx; conversely, it immediately abolished cellular Cl influx in the absence of HCO 3 . In conclusion, about 50% of cellular influx is sensitive to HCO 3 , inhibitable by SCN, acetazolamide, furosemide, SITS and amiloride and furthermore slowly dependent on Na+. The residual cellular influx is insensitive to bicarbonate, inhibitable by SCN, resistant to acetazolamide, furosemide, SITS and amiloride, and immediately dependent on Na+. Thus, about 50% of apical membrane NaCl influx appears to result from a Na+/H+ and Cl/HCO 3 exchange, whereas the residual influx seems to be due to Na+–Cl contranport on a single carrier. Whether both components are simultaneously present or the latter represents a cellular homeostatic counterreaction to the inhibition of the former is not clear.  相似文献   
3.
Summary— A mini organ culture of mouse gallbladder was developed as an alternative to primary cultures of epithelial cells of this organ. Small pieces of tissue were prepared and maintained in minimum essential Eagle medium with 10% foetal calf serum, for as long as 7 days. Qualitative and quantitative ultrastructural studies have been performed using electron microscopy. The viability of cells was evaluated by stereological quantification of endocytotic vesicles containing horseradish peroxidase and labelling of exocytotic glycoproteins with tannic acid. The morphology of tissue pieces during the 1st h of culturing and tissue isolated directly from animals exhibited no significant differences. However, after 4 h in culture degradative changes became evident in many cells. At that time, endo- and exocytosis were both dramatically reduced. After 24 h, the morphology, as well as endo- and exocytosis recovered and were comparable to the parameters of the tissue in vivo or after 1 h in culture. The endocytotic activity remained unchanged from day 1 to 7 of culturing, while the number of exocytotic vesicles gradually decreased after 2 days in culture. Our results prove that mini organ culture of gallbladder is morphologically and functionally comparable with the tissue in vivo and for studies of epithelium in culture it is more convenient than primary cultures.  相似文献   
4.
This study examines the hypothesis that PAF stimulates release of PGI2 from inflamed rabbit gallbladder explant cell cultures. New Zealand white rabbits underwent bile duct ligation for 72 h (72 h BDL), or sham operation, Sham and 72 h BDL gallbladder explants were placed in culture, and the cells grown to 75% confluence. The cells were exposed to increasing concentrations of PAF for 60 min. The media analyzed for eicosanoid release by EIA and the cells analyzed for cyclooxygenase and prostacyclin synthase content by immunoblot analysis. PAF increased release of 6-keto-PGF from the 72 h BDL gallbladder cell cultures in a dose-related manner which was inhibited by indomethacin preincubation by 90%. The increased 72 h BDL cell release of 6-keto-PGF was not associated with changes in the content of cyclooxygenase or prostacyclin synthase. PAF did not alter eicosanoid release from sham control cell cultures. These data suggest that PAF can only up-regulate endogenous 6-keto-PGF release from the 72 h BDL cells that had been previously stimulated by inflammation. PAF may thus contribute to gallbladder distention and injury by chronic stimulation of inflamed gallbladder PGI2 release.  相似文献   
5.
Summary Epithelial cell volume is a sensitive indicator of the balance between solute entry into the cell and solute exit. Solute accumulation in the cell leads to cell swelling because the water permeability of the cell membranes is high. Similarly, solute depletion leads to cell shrinkage. The rate of volume change under a variety of experimental conditions may be utilized to study the rate and direction of solute transport by an epithelial cell. The pathways of water movement across an epithelium may also be deduced from the changes in cellular volume. A technique for the measurement of the volume of living epithelial cells is described, and a number of experiments are discussed in which cell volume determination provided significant new information about the dynamic behavior of epithelia. The mechanism of volume regulation of epithelial cells exposed to anisotonic bathing solution is discussed and shown to involve the transient stimulation of normally dormant ion exchangers in the cell membrane.  相似文献   
6.
Summary Gallbladders transport isotonically over a wide range of osmolarities. This ability has been assumed to depend on the geometry of the lateral intercellular spaces. We report that this geometry in theNecturus gallbladder varies extensively with the external osmolarity and dependsin vitro on the integrity of the subepithelial tissues. The structure of the living epithelium was studied by Nomarski light microscopy while ultrastructural effects were revealed by electron microscopy. The short-term effects (<60 min) of low external osmolarities were: 1) the cells became bell-shaped with an increased cell height measured centrally, 2) lateral intercellular spaces lost their convoluted character; and 3) numerous membrane-bound cavities appeared in the cells. Furthermore, long-term exposure to the low external osmolarities caused an uneven density of epithelial cells. With subepithelial tissues intact, blistering of the epithelium cell layer was evident. Qualitative electron-microscopic data indicate that the membrane of the cavities was recruited from the basolateral cell membrane. This agrees well with light-microscopic observation that the cavities were initiated as invaginations of this cell membrane.  相似文献   
7.
Cyclic AMP and intracellular ionic activities innecturus gallbladder   总被引:2,自引:0,他引:2  
Summary Open-tip and liquid ion-exchanger microelectrodes were used to study the effects of cAMP (6mm, added to the serosal medium) on apical membrane potential (E m ) and intracellular sodium, potassium, and chloride activities (a Na i ,a K i ,a Cl i ) inNecturus gallbladder under open-circuit conditions. Transepithelial potential difference (E Tr ) was also measured. In the presence of cAMP,a Cl i fell from about 1.5 times its equilibrium value to a level that corresponded to electrochemical equilibrium across the apical and basolateral cell membranes. Under these conditionsa Na i decreased anda K i increased,E m was unchanged andE Tr increased from virtually zero to a small but significant serosal positive value. The cAMP-induced increase ina K i was abolished when Cl-free incubation media were used. Addition of the Ca++-ionophore A23187 (0.5 g/ml) to the serosal medium had no effect onE m ,E Tr , ora Cl i . When A23187 was added to the mucosal medium,E m and the basolateral membrane potential hyperpolarized by about 20 mV and an increase in the outwardly directed electrochemical driving force for Cl was observed. These results indicate that cAMP inhibits coupled transapical Na–Cl entry into epithelial cells ofNecturus gallbladder and suggest that this inhibition may not be mediated by an increase in intracellular Ca++ concentration.  相似文献   
8.
Summary Transepithelial current fluctuations were recorded inNecturus gallbladder, clamped at negative as well as positive potentials up to 64 mV. With NaCl-Ringer's (+10mm TAP) on both sides a mucosa-negative potential enhanced the relaxation noise component, present at zero potential, and produced peaking in the power spectrum at potentials above –36mV. Concomitantly at these potentials an inductive as well as a capacitive low-frequency feature appeared in the impedance locus. Clamping at positive potentials of 18 mV suppressed the relaxation noise component. At potentials above 51mV the spectral values increased predominantly at low frequencies. In this case the power spectrum showed only a 1/f noise component. The experiments confirm the previous finding that a K+ efflux through fluctuating apical K+ channels exists under normal conditions. With serosal KCl-Ringer's the initial Lorentzian component was enhanced at negative but suppressed at positive potentials. The increase at negative potentials was less pronounced than in experiments with NaCl-Ringer's on both sides, indicating saturation of the fluctuating K+ current component. With mucosal KCl-Ringer's a negative potential depressed the initial relaxation noise component, whereas it was enhanced at +18 mV clamp potential. In the latter case an additional Lorentzian component became apparent at higher frequencies. At potentials of 36 mV and above the low-frequency Lorentzian disappeared whereas the corner frequency of the high-frequency component increased. The latter experiments demonstrate that the relaxation noise component inNecturus gallbladder consists of two superimposed Lorentzians. As the relaxation times of these two components behave differently under an electrical field, there may exist two different types of K+ channels. It is demonstrated that peaking in the plateau of power spectra can be explained by frequency-dependent attenuation effects, caused by a polarization impedance.  相似文献   
9.
Gallbladder carcinoma (GBC) is a vicious and invasive disease. The major challenge in the clinical treatment of GBC is the lack of a suitable prognosis method. Chemokine receptors such as CXCR3, CXCR4 and CXCR7 play vital roles in the process of tumour progression and metastasis. Their expression levels and distribution are proven to be indicative of the progression of GBC, but are hard to be decoded by conventional pathological methods, and therefore, not commonly used in the prognosis of GBC. In this study, we developed a computer‐aided image analysis method, which we used to quantitatively measure the expression levels of CXCR3, CXCR4 and CXCR7 in the nuclei and cytoplasm of glandular and interstitial cells from a cohort of 55 GBC patients. We found that CXCR3, CXCR4 and CXCR7 expressions are associated with the clinicopathological variables of GBC. Cytoplasmic CXCR3, nuclear CXCR7 and cytoplasmic CXCR7 were significant predictive factors of histology invasion, whereas cytoplasmic CXCR4 and nuclear CXCR4 were significantly correlated with T and N stage and were associated with the overall survival and disease‐free survival. These results suggest that the quantification and localisation of CXCR3, CXCR4 and CXCR7 expressions in different cell types should be considered using computer‐aided assessment to improve the accuracy of prognosis in GBC.  相似文献   
10.

Background and aim

PSCA is a tissue specific tumor suppressor or oncogene which has been found to be associated with several human tumors including gallbladder cancer. It is considered to be involved in the cell-proliferation inhibition and/or cell-death induction activity. Therefore, we aimed to investigate the role of PSCA gene polymorphisms in gallbladder cancer risk in North Indian population.

Methodology

A total of 405 gallbladder cancer patients and 247 healthy controls were included in the case–control study for risk prediction. We examined the association of two functional SNPs, rs2294008 and rs2978974 in PSCA gene by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. Linkage disequilibrium and haplotype analysis was done with the help of SNPstats software. FDR test was used to correct for multiple comparisons.

Results

No significant associations of rs2294008 and rs2978974 genetic variants of the PSCA gene were found with GBC risk at allele, genotype or haplotype levels. Stratifying the subjects on the basis of gallstone also did not show any significant result. However, on gender stratification, we found a significant association of Trs2294008-Grs2978974 haplotype with higher risk of GBC in females (FDR Pcorr = 0.021, OR = 1.6). In contrary, Trs2294008-A rs2978974 haplotype conferred significant lower risk in males (FDR Pcorr = 0.013; OR = 0.25).

Conclusions

These findings suggest that PSCA genetic variants may have a significant effect on GBC susceptibility in a gender specific manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号