首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2021年   1篇
  2016年   2篇
  2015年   2篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Oligodendroglia were isolated from bovine brain, and a crude, microsomal fraction obtained from cell homogenates was subfractionated into myelin (MP), plasma membranes (PM), Golgi (GF), smooth (SER) and rough (RER) endoplasmic membranes using discontinuous-sucrose gradient centrifugation. The submicrosomal fractions were characterized by ultrastructural examination and analysis of the specific organelle markers. The myelin and plasma membrane rich fractions contained characteristically the highest amounts of the lipid with lower mole percentages of total phospholipids and phosphatidylcholine, and higher concentrations of phosphatidylethanolamine (+plasmalogens), cholesterol and galactolipids. Considerable amounts of the typical myelin galactolipids (galacto-cerebrosides, sulfatides and monogalactosyl diglycerides) were also found in the Golgi fraction (GF). The GF fraction had the greatest enrichment of glycolipid-forming galactosyltransferases, and the distribution of these enzymes correlated well with that of the Golgi marker enzymes. The results give evidence that intracellular Golgi apparatus of oligodendroglia is rich in the myelin-specific lipids, and suggest its involvement in the synthesis and processing of myelin lipids.  相似文献   
2.
We have developed a simple method involving high-performance thin layer chromatographic separation of total brain and myelin lipids. Only two solvent systems consisting of chloroform: methanol: acetic acid and water at different concentrations were needed. The plate was then stained with three sequential procedures to visualize phospholipids, cholesterol and galactolipids. Densitometric procedure at each step of staining was utilized to obtain quantitative analysis of brain and myelin samples.  相似文献   
3.
Effects of the antiozonant EDU, N-[2-(2-oxo-1-imidazolidinyl) ethyl]-N'-phenylurea, on the content and composition of foliar lipids in snapbean ( Phaseolus vulgaris L. cv. Bush Blue Lake 290) before and after a single, acute ozone (O3) exposure were assessed. Pretreatment with EDU conferred protection against O3-induced necrosis and losses of glycerolipids and chlorophyll. Systemic treatment of snapbean plants with EDU did not significantly alter membrane lipids in the first trifoliate leaf. Leaves of untreated controls had lost ca 50% of both galacto- (GL) and phospholipids (PL) by the end of a 3 h exposure to 0.4 μl l−1 O3. A decline in the ratio of mono- to di-galactosyldiacylglycerol (MGDG/DGDG) was associated with the loss of GL, and a decline in the ratio of linoleic to linolenic acid (18:2/18:3) was associated with the loss of PL in untreated controls. EDU-treated plants showed no significant loss of foliar GL and PL. The MGDG/DGDG ratio declined only slightly, and the 18:2/18:3 ratio in PL increased during O3 exposure of EDU-treated seedlings. The level of total membrane sterols, including free sterols (FS), acylated steryl glycosides (ASG) and steryl glycosides (SG), did not change during O3 exposure of either treated or untreated plants. However, in the controls the proportions of ASG and SG increased at the expense of FS, and the ratio of stigmasterol/sitolsterol increased in FS and SG. In EDU-treated plants, a relatively small increase in SG was offset by a decrease in FS, and there was no change in the stigmasterol/sitosterol ratio in ASG, SG or FS. The results indicate that EDU may confer tolerance to O3 through induction of enzyme systems involved in the elimination of activated oxygen species and free radicals.  相似文献   
4.
Chromoplasts from yellow orange (Citrus sinensis) fruit peel contain monogalactosyl diglycerides (MGDG), digalactosyl diglycerides (DGDG) and phosphatidyl glycerol (PG) in amounts similar to those found in chloroplasts from green fruit peel. Juice chromoplasts contain relatively little MGDG and no DGDG with high levels of phosphatidyl choline and phosphatidyl ethanolamine but no PG.  相似文献   
5.
Suspensions of isolated pine needle chloroplasts were shown to incorporate galactose from UDP galactose-[14C] into galactolipids. The incorporation of the label among galactolipids was always considerably higher in the monogalactosyl diglycerides than in the digalactosyl diglycerides. The galactosyl incorporation into both galactolipid fractions was optimal at pH 8.0 and was inhibited by sulphydryl reagents (p-chloromercuribenzoate, N-ethyl maleimide and CdCl2). The chloroplast preparations were also able to biosynthesize various phospholipids and galactolipids from palmitoyl-[1-14C]-CoA; the major portion of the label appeared in phosphatidyl choline. The incorporation of palmitic-[1-14C] acid into various lipids was very poor compared to that of palmitoyl-[1-14C]-CoA. However, addition of ATP and CoA markedly stimulated lipid biosynthesis from palmitic-[1-14C] acid, suggesting the presence of activating enzymes. These chloroplast suspensions did not show any de novo fatty acid synthesis.  相似文献   
6.
Galactolipids and phospholipids rapidly accumulated in a whole seed between 2 and 4 days after germination. However, the rate of incorporation of [14C] acetate into galactolipids was very low. The predominant fatty acid of galactolipids was linolenic acid, while those of phospholipids were linoleic and palmitic acids. Fatty acids of monogalactosyldiacylglycerol in germinating safflower seeds were randomly distributed between the 1 - and 2-positions of the glycerol molecule and the distribution in digalactosyldiacylglycerol was slightly non-random, while fatty acids of galactolipids in mature safflower leaves were non-randomly distributed. Triacylglycerol was synthesized in the cotyledon tissue of the germinating seeds simultaneously with its rapid degradation. In addition, lipid biosynthesis in protoplasts is described.  相似文献   
7.
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation‐tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation‐sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x‐DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x‐DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation‐sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer‐ to non‐bilayer‐forming lipids, thus contributing to protein and membrane stabilization.  相似文献   
8.
9.
The relationship between chilling tolerance of six rice cultivars – Facagro 57, Facagro 76, Fujisaka 5, Kirundo 3, Kirundo 9 and IR64 -and the fatty acid composition in total lipids, phospholipids, galactolipids and neutral lipids from leaves was studied. Higher double bond index and proportions of linolenic acid in the phospholipid and galactolipid classes were related to cultivar chilling tolerance, but this was not so for the total lipids nor the neutral lipid class. The somaclonal families derived from Facagro 76, Kirundo 3 and Kirundo 9 that showed enhanced chilling tolerance as compared to their original parental cultivar were analyzed for fatty acid composition in phospholipids and galactolipids from leaves. Altered proportions in fatty acid composition in phospholipids, galactolipids or both were found in the somaclonal families derived from Facagro 76 and Kirundo 9, but not from Kirundo 3. These changes most usually resulted in higher double bond index and higher proportions in linoleic and linolenic acids which were related either to lower ratio of C16 to C18 fatty acids or to higher unsaturation in the C18 fatty acid fraction. Different mechanisms thus seem to be implicated in the altered fatty acid composition of somaclones, which may be related to the chilling tolerance improvement of some somaclonal families.  相似文献   
10.
Changes in the membrane lipid and sterols content and composition were studied during induction and differentiation in callus cultures of Brassica napus var. oleifera. Callus induction was associated with an increase of DGDG content, significant changes in fatty acids composition of all lipid fractions and increased degree of lipid unsaturation. The membrane lipid composition of tissue at different degrees of differentiation was found to vary significantly, particularly two weeks after transfer of callus to regeneration medium. The main differences concerned the content and composition of galactolipids. Curiously in many cases, these differences declined during subsequent culture, in spite of the morphogenesis process which was in progress. Another result of differentiation was the change in free sterol composition: in shoot regenerating calli the content of stigmasterol had rose whereas the accumulation of campesterol decreased. Even though observed changes in membrane properties may not play a role in morphogenesis they are nevertheless useful as developmental markers and can be invaluable in understanding biochemical basis of morphogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号