首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3043篇
  免费   226篇
  国内免费   318篇
  2023年   55篇
  2022年   52篇
  2021年   103篇
  2020年   115篇
  2019年   132篇
  2018年   107篇
  2017年   103篇
  2016年   104篇
  2015年   113篇
  2014年   154篇
  2013年   188篇
  2012年   133篇
  2011年   135篇
  2010年   102篇
  2009年   130篇
  2008年   145篇
  2007年   146篇
  2006年   132篇
  2005年   91篇
  2004年   114篇
  2003年   118篇
  2002年   98篇
  2001年   99篇
  2000年   79篇
  1999年   57篇
  1998年   73篇
  1997年   72篇
  1996年   62篇
  1995年   56篇
  1994年   54篇
  1993年   56篇
  1992年   33篇
  1991年   37篇
  1990年   33篇
  1989年   37篇
  1988年   23篇
  1987年   30篇
  1986年   22篇
  1985年   27篇
  1984年   37篇
  1983年   16篇
  1982年   13篇
  1981年   20篇
  1980年   11篇
  1979年   16篇
  1978年   12篇
  1977年   9篇
  1976年   10篇
  1974年   9篇
  1973年   5篇
排序方式: 共有3587条查询结果,搜索用时 15 毫秒
1.
The association between the red macroalga Jania adhaerens J. V. Lamour. and the sponge Haliclona caerulea is the most successful life‐form between 2 and 4 m depth in Mazatlán Bay (Mexican Pacific). J. adhaerens colonizes the rocky intertidal area and penetrates into deeper areas only when it lives in association with H. caerulea. The aposymbiotic form of the sponge has not been reported in the bay. To understand the ecological success of this association, we examined the capacity of J. adhaerens to acclimate in Mazatlán Bay using transplant experiments. The transplanted aposymbiotic J. adhaerens did not survive the first 2 weeks; however, J. adhaerens when living in association with H. caerulea, acclimated easily to depth, showing no sign of mortality during the 103 d of the experiment. We conclude that the ability of J. adhaerens to colonize in deeper areas in this hydrodynamic environment may in part rely on the protection provided by the sponge to the algal canopy. Both species contribute to the shape of the associated form. Nevertheless, the morphological variation in the association appears to be dominated by the variation in J. adhaerens canopy to regulate pigment self‐shading under light‐limited conditions and/or tissue resistance under high hydrodynamics. Consequently, our results are consistent with light as the abiotic controlling factor, which regulates the lower depth distribution of the association in Mazatlán Bay, through limiting the growth rate of J. adhaerens. Hydrodynamics may determine the upper limit of the association by imposing high mass losses.  相似文献   
2.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   
3.
4.
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors'' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants'' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens.  相似文献   
5.
6.
The lipid composition of swimming spores, cysts and five hour germlings was established. Spores utilized triglycerides first, then phospholipids. Upon encystment all glycolipid components decreased, while in germlings the phospholipids, monoglycerides and sterol esters exhibited a marked increase.  相似文献   
7.
8.
9.
10.
Abstract. The location and distribution of symbiotic bacteria during floral development in Ardisia crispa (Thunb.) A.DC., a species characterized by bacterial leaf nodules, has been studied using light, scanning and transmission electron microscopy. During early floral development, bacteria in mucilage derived from host plant trichomes, become enclosed in a small conical chamber on top of the placenta, as a result of the closure and fusion of the carpel initials. The placental epidermal cells, which appear to be secretory in nature, become detached apically in places forming a network of grooves which traverse the placental surface. The symbiotic bacteria are preferentially located in these grooves. As growth and development of the placenta proceed, the grooves widen and deepen to form channels. The cells lining these channels secrete a mucilaginous material. The network of channels covers the entire placental surface and terminates at the placental margins surrounding the ovules. Bacteria are found within the channels, at the ends of the channels near the margin of the placenta, on the surface of the ovules and in the micropyle. It is suggested that these mucilage-filled channels are responsible for, and a prerequisite of, ensuring that the bacterial partner is efficiently transmitted from one host generation to the next by providing a mechanism by which the bacteria arc accurately placed within the developing seed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号