首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  国内免费   2篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   2篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   5篇
  1985年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
The consumption of fructans as a low caloric food ingredient or dietary fibre is rapidly increasing due to health benefits. Presently, the most important fructan source is chicory, but these fructans have a simple linear structure and are prone to degradation. Additional sources of high-quality tailor-made fructans would provide novel opportunities for their use as food ingredients. Sugar beet is a highly productive crop that does not normally synthesize fructans. We have introduced specific onion fructosyltransferases into sugar beet. This resulted in an efficient conversion of sucrose into complex, onion-type fructans, without the loss of storage carbohydrate content.  相似文献   
2.
3.
An enzyme KfoG with unknown function is coded by the gene kfoG. Gene kfoG belongs to genes from region 2, which are responsible for structure of capsular polysaccharide. Only two enzymes, KfoG and KfoC, coded by genes from region 2, have a glycosyltransferase motif. KfoC is the bifunctional enzyme, which is able to add both GalNAc and GlcUA on nascent polysaccharide, termed chondroitin polymerase. KfoG was predicted to be a fructosyltransferase. The gene that codes the KfoG enzyme was disrupted using homological recombination and absence of this gene was confirmed on both DNA and RNA levels. After disruption no structural changes have been observed, what indicates that fructose branching of the chondroitin backbone is not caused by enzymes, which are coded by genes from region 2 of the K4 capsular gene cluster.  相似文献   
4.
* Fructan is the major nonstructural carbohydrate reserve in temperate grasses. To understand regulatory mechanisms in fructan synthesis and adaptation to cold environments, the isolation, functional characterization and genetic mapping of fructosyltransferase (FT) genes in perennial ryegrass (Lolium perenne) are described. * Six cDNAs (prft1-prft6) encoding FTs were isolated from cold-treated ryegrass plants, and three were positioned on a perennial ryegrass linkage map. Recombinant proteins were produced in Pichia pastoris and enzymatic activity was characterized. Changes in carbohydrate levels and mRNA levels of FT genes during cold treatment were also analysed. * One gene encodes sucrose-sucrose 1-fructosyltransferase (1-SST), and two gene encode fructan-fructan 6G-fructosyltransferase (6G-FFT). Protein sequences for the other genes (prfts 1, 2 and 6) were similar to sucrose-fructan 6-fructosyltransferase (6-SFT). The 1-SST and prft1 genes were colocalized with an invertase gene on the ryegrass linkage map. The mRNA levels of prft1 and prft2 increased gradually during cold treatment, while those of the 1-SST and 6G-FFT genes first increased, but then decreased before increasing again during a longer period of cold treatment. * Thus at least two different patterns of gene expression have developed during the evolution of functionally diverse FT genes, which are associated in a coordinated way with fructan synthesis in a cold environment.  相似文献   
5.
游离及固定化果糖基转移酶部分酶学性质的比较研究   总被引:4,自引:0,他引:4  
 从诱变、筛选的米曲霉GX0 0 10菌株所产生的果糖基转移酶 ,经过纯化和固定化操作分别制备游离酶和固定化酶 ,对两者的酶学性质进行了比较研究 .结果表明 ,两者在蔗糖转化为蔗果低聚糖的酶促反应中 ,最适pH为 5 5,在pH5 0~ 7 5之间酶活性相对稳定 .游离酶和固定化酶的适宜温度范围分别是 4 5~ 52℃和 4 0~ 55℃ .在 55℃保温 60min ,酶活性保存率分别是 61 6%和 87 5% .固定化酶的热稳定性提高 .0 1mmol LHg2 +和 1mmol LAg+能完全抑制游离酶的活性 ,但只能部分抑制固定化酶的活性 ,1mmol L的Ti2 +能完全抑制两者的活性 .以蔗糖为底物时 ,游离酶的米氏常数Km=2 15mmol L ,而固定化酶Km =386mmol L .游离酶只能使用一次 ,固定化酶反复使用 54次后 ,剩余活力为 55 2 % .用 55% (W V)蔗糖溶液与固定化酶在pH5 0 ,4 6℃下作用 12h ,可获得61 5% (总低聚糖 总糖 )产物 ,其中蔗果五糖含量达到 7 2 % .  相似文献   
6.
Microbial fructosyltransferases and the role of fructans   总被引:1,自引:0,他引:1  
Microbial fructosyltransferases are polymerases that are involved in microbial fructan (levan, inulin and fructo-oligosaccharide) biosynthesis. Structurally, microbial fructosyltransferase proteins share the catalytic domain of glycoside hydrolases 68 family and are grouped in seven phylogenetically related clusters. Fructosyltransferase-encoding genes are organized in operons or in clusters associated with other genes related to carbohydrate metabolism or fructosyltransferase secretion. Fructosyltransferase gene expression is mainly regulated by two-component systems or phosphorelay mechanisms that respond to sucrose availability or other environmental signals. Microbial fructans are involved in conferring resistance to environmental stress such as water deprivation, nutrient assimilation, biofilm formation, and as virulence factors in colonization. As a result of the biological and industrial importance of fructans, fructosyltransferases have been the subject of extensive research, conducted to improve their enzymatic activity or to elucidate their biological role in nature.  相似文献   
7.
The new fructosyltransferase (FTase) from Bacillus maceransEG-6 showed a broad acceptor specificity, and resulted in the formation of fructosylxyloside (FX) with d-xylose being the most effective acceptor. The optimal FTase concentration for FX production was 0.6 unit per g sucrose, which gave the highest transfer ratio, 83%, of fructosyl moiety from sucrose to d-xylose. Maximum yield of FX was 114 g l–1with 200 g sucrose l–1and 300 g d-xylose l–1.  相似文献   
8.
低聚果糖及其制备的研究进展   总被引:6,自引:0,他引:6  
果糖基转移酶能够催化蔗糖水解并通过转果糖基作用产生低聚果糖。本文综述了十几年来国内外对果糖基转移酶及其固定化研究的若干结果和进展。对该领域的发展趋势作扼要的展望。  相似文献   
9.
A sugar mixture containing fructooligosaccharides and isomaltooligo-saccharides was produced. Sucrose was converted to fructooligosaccharides by a commercial enzyme preparation. The sugar mixture contained kestose (33.5%), nystose (13.3%), fructofuranosyl nystose (5.7%), glucose (20.9%), and unreacted sucrose (26.6%). The unreacted sucrose was converted to isomaltooligosaccharides by reacting the sugar mixture with Leuconostoc mesenteroides B-512FM dextransucrase. The final product comprised fructooligosaccharides (kestose, nystose, fructofuranosyl nystose), isomaltooligosaccharides (isomaltose through isomaltodecaose), glucose, and fructose.  相似文献   
10.
AIMS: The objective of the present study was to explore the role of immobilized fructosyltransferase (FTF) in adhesion process. METHODS AND RESULTS: We investigated real-time biospecific interactions between several types of oral bacteria and recombinant FTF immobilized on a biosensor chip, using surface plasmon resonance technology. Streptococcus mutans, Streptococcus sobrinus and Actinomyces viscosus demonstrated significant binding to FTF. Actinomyces viscosus had a greater binding to FTF, with 373 Resonance Units (RU), than the other tested bacteria. The binding level to FTF of Strep. sobrinus was 320 RU, whereas Strep. mutans and Streptococcus salivarious show binding of 296 and 245 RU, respectively. The binding sensograms displayed different profiles for the tested bacteria at various cell density, suggesting a different affinity to immobilized FTF. CONCLUSIONS: The results from this study suggest that FTF may influence bacterial adherence and colonization of the dental biofilm. SIGNIFICANCE AND IMPACT OF THE STUDY: The biomolecular interaction analysis enables real-time monitoring of the interaction between adhesions of intact bacteria and their ligands, which might be crucial in the initial phase of biofilm development in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号