首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  2022年   1篇
  2021年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有14条查询结果,搜索用时 62 毫秒
1.
Cytokines and chemokines trigger complex intracellular signaling through specific receptors to mediate immune cell recruitment and activation at the sites of infection. CX3CL1 (Fractalkine), a membrane-bound chemokine also capable of facilitating intercellular interactions as an adhesion molecule, contributes to host immune responses by virtue of its chemoattractant functions. Published studies have documented increased CX3CL1 expression in target tissues in a murine model of spotted fever rickettsiosis temporally corresponding to infiltration of macrophages and recovery from infection. Because pathogenic rickettsiae primarily target vascular endothelium in the mammalian hosts, we have now determined CX3CL1 mRNA and protein expression in cultured human microvascular endothelial cells (HMECs) infected in vitro with Rickettsia rickettsii. Our findings reveal 15.5 ± 4.0-fold and 12.3 ± 2.3-fold increase in Cx3cl1 mRNA expression at 3 h and 24 h post-infection, coinciding with higher steady-state levels of the corresponding protein in comparison to uninfected HMECs. Since CX3CL1 is a validated target of microRNA (miR)-424-5p (miR-424) and our earlier findings demonstrated robust down-regulation of miR-424 in R. rickettsii-infected HMECs, we further explored the possibility of regulation of CX3CL1 expression during rickettsial infection by miR-424. As expected, R. rickettsii infection resulted in 87 ± 5% reduction in miR-424 expression in host HMECs. Interestingly, a miR-424 mimic downregulated R. rickettsii-induced expression of CX3CL1, whereas an inhibitor of miR-424 yielded a converse up-regulatory effect, suggesting miR-424-mediated regulation of CX3CL1 during infection. Together, these findings provide the first evidence for the roles of a host microRNA in the regulation of an important bifunctional chemokine governing innate immune responses to pathogenic rickettsiae.  相似文献   
2.
An essential aspect of normal brain function is the bidirectional interaction and communication between neurons and neighbouring glial cells. To this end, the brain has evolved ligand–receptor partnerships that facilitate crosstalk between different cell types. The chemokine, fractalkine (FKN), is expressed on neuronal cells, and its receptor, CX3CR1, is predominantly expressed on microglia. This review focuses on several important functional roles for FKN/CX3CR1 in both health and disease of the central nervous system. It has been posited that FKN is involved in microglial infiltration of the brain during development. Microglia, in turn, are implicated in the developmental synaptic pruning that occurs during brain maturation. The abundance of FKN on mature hippocampal neurons suggests a homeostatic non-inflammatory role in mechanisms of learning and memory. There is substantial evidence describing a role for FKN in hippocampal synaptic plasticity. FKN, on the one hand, appears to prevent excess microglial activation in the absence of injury while promoting activation of microglia and astrocytes during inflammatory episodes. Thus, FKN appears to be neuroprotective in some settings, whereas it contributes to neuronal damage in others. Many progressive neuroinflammatory disorders that are associated with increased microglial activation, such as Alzheimer''s disease, show disruption of the FKN/CX3CR1 communication system. Thus, targeting CX3CR1 receptor hyperactivation with specific antagonists in such neuroinflammatory conditions may eventually lead to novel neurotherapeutics.  相似文献   
3.
The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin‐induced diabetic rats, glyoxal‐treated R28 cells and hypoxia‐treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba‐1, TSPO, NF‐κB, Nrf2 and inflammation‐related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal‐treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia‐treated microglia, which was largely dampened by FKN. The NF‐κB and Nrf2 expressions and intracellular ROS were up‐regulated in hypoxia‐treated microglia compared with that in normoxia control, and FKN significantly inhibited NF‐κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF‐κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation‐related cytokines and ROS, and protect the retina from diabetes insult.  相似文献   
4.
Several neurodegenerative disorders are associated with evidence of inflammation, one feature of which is increased activation of microglia, the most likely cellular source of inflammatory cytokines like interleukin-1β. It is now recognized that interaction of microglia with other cells contributes to maintenance of microglia in a quiescent state and the complementary distribution of the chemokine, fractalkine (CX3CL1) on neurons and its receptor (CX3CR1) on microglia, suggests that this interaction may play a role in modulating microglial activation. Here we demonstrate that both soluble and membrane-bound fractalkine attenuate lipopolysaccharide-induced microglial activation in vitro. We also show that fractalkine expression is reduced in the brain of aged rats and this is accompanied by an age-related increase in microglial activation. Treatment of aged rats with fractalkine attenuates the age-related increase in microglial activation and the evidence indicates that fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway is required to maintain microglia in a quiescent state both in vivo and in vitro .  相似文献   
5.
摘要 目的:探讨神经精神性狼疮(NPSLE)患者血清可溶性fractalkine(sFKN)、乳酸脱氢酶(LDH)水平与疾病活动程度的关系,分析NPSLE发病的危险因素。方法:选取2016年1月-2020年12月我院收治的106例系统性红斑狼疮患者,其中44例患者出现神经精神症状(NPSLE组),62例患者未出现神经精神症状(非NPSLE组)。检测血清sFKN、LDH水平,采用SLE疾病活动程度(SLEDAI)评分评估疾病活动程度,根据 SLEDAI评分将NPSLE组患者分为轻度组(17例)、中度组(15例)、重度组(12例)。Spearman秩相关分析血清sFKN、LDH水平与SLEDAI评分之间相关性,多因素Logistic回归分析NPSLE发病的影响因素。结果:NPSLE组血清sFKN、LDH水平、SLEDAI评分均高于非NPSLE组(P<0.05)。重度组血清sFKN、LDH水平高于中度组和轻度组(P<0.05),中度组血清sFKN、LDH水平高于轻度组(P<0.05)。血清sFKN、LDH水平与SLEDAI评分均呈正相关(rs=0.868、0.732,P<0.05)。多因素Logistic回归分析结果显示发病年龄较小、病程较短、未接受正规糖皮质激素治疗、高sFKN、高LDH是NPSLE发病的危险因素(P<0.05)。结论:NPSLE患者血清sFKN、LDH水平均增高,高水平sFKN、LDH与NPSLE发生和疾病活动程度增加有关,临床监测血清sFKN、LDH水平有助于早期识别NPSLE。  相似文献   
6.
abstract

Embryo implantation and subsequent placentation require a fine balanced fetal-maternal cross-talk of hormones, cytokines and chemokines. Amongst the group of chemokines, CX3CL1 (also known as fractalkine) has recently attracted attention in the field of reproductive research. It exists both as membrane-bound and soluble isoforms. On the basis of current experimental evidence, fractalkine is suggested to regulate adhesion and migration processes in fetal-maternal interaction at different stages of human pregnancy. Expressed by uterine glandular epithelial cells, predominantly during the mid-secretory phase of the menstrual cycle, fractalkine appears to prime the blastocyst for forthcoming implantation. After implantation, fractalkine is suggested to regulate invasion of extravillous trophoblasts by altering their expression profile of adhesion molecules. With onset of perfusion of the intervillous space at the end of first trimester, fractalkine present at the apical microvillous plasma membrane of the syncytiotrophoblast may mediate close interaction of placental villi with circulating maternal blood cells.  相似文献   
7.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   
8.
There is increasing evidence that a number of cytokines and their receptors are involved in the processes that lead to the development and maintenance of neuropathic pain states. Here we demonstrate that levels of CX3CR1 (the receptor for the chemokine fractalkine) mRNA in lumbar dorsal root ganglia (DRG) increase 5.8-fold 7 days after sciatic nerve axotomy, and 1.7- and 2.9-fold, 3 and 7 days respectively, after the spared nerve injury (SNI) model of neuropathic pain. In contrast, no significant change in the levels of fractalkine mRNA is apparent in the DRG after axotomy or SNI. The increase in CX3CR1 mRNA is paralleled by a 3.9- and 2.1-fold increase in the number of CX3CR1-positive macrophages in the DRG 7 days after axotomy and SNI, respectively. Expression of CX3CR1 in macrophages is also markedly increased in the sciatic nerve proximal to site of injury, by 25.7-fold after axotomy and 16.2-fold after SNI, 7 days after injury. Intra-neural injection into the sciatic nerve of 400 ng or 100 ng of fractalkine in adult 129OlaHsd mice significantly delayed the development of allodynia for 3 days following SNI. Further, CX3CR1 knockout (KO) mice display an increase in allodynia for three weeks after SNI compared to strain-matched Balb/c controls. Taken together, these results suggest an anti-allodynic role for fractalkine and its receptor in the mouse.  相似文献   
9.
10.
The liver is a vital organ with distinctive anatomy, histology and heterogeneous cell populations. These characteristics are of particular importance in maintaining immune homeostasis within the liver microenvironments, notably the biliary tree. Cholangiocytes are the first line of defense of the biliary tree against foreign substances, and are equipped to participate through various immunological pathways. Indeed, cholangiocytes protect against pathogens by TLRs-related signaling; maintain tolerance by expression of IRAK-M and PPARγ; limit immune response by inducing apoptosis of leukocytes; present antigen by expressing human leukocyte antigen molecules and costimulatory molecules; recruit leukocytes to the target site by expressing cytokines and chemokines. However, breach of tolerance in the biliary tree results in various cholangiopathies, exemplified by primary biliary cholangitis, primary sclerosing cholangitis and biliary atresia. Lessons learned from immune tolerance of the biliary tree will provide the basis for the development of effective therapeutic approaches against autoimmune biliary tract diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号