首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
李斌  李明玉  杜志烨  汪开顺  肖凯  王鑫  石杨  姬红丽  陈稷  黄进 《广西植物》2022,42(11):1811-1821
水稻成蛋白基因成员OsFH1在水稻根毛的生长发育中起着关键作用,这一过程受到环境因素的调控,当前的研究对环境因素如何与OsFH1互作调控水稻根毛的机制尚未阐明。为探索水稻成蛋白成员是否在环境因素介导的osfh1突变体根毛表型恢复中发挥作用,该研究使用1/2 MS液体培养液与1/2 MS固体培养基处理osfh1突变体,通过qRT-PCR技术分析成蛋白家族成员表达量,并对成蛋白家族进行生物信息学分析。结果表明:(1)与野生型相比,在液培中osfh1突变体主根根毛缺失,地上部分较短,侧根数量增加,在固体培养中osfh1突变体根毛缺失表型得到恢复。(2)与野生型相比,当osfh1突变体从液培到固培环境时,OsFH16表达量下降,OsFH17表达量上升,并且差异显著。(3)OsFH1、OsFH16、OsFH17都是第一类成蛋白亚家族成员,都具有生长素、赤霉素以及厌氧等与环境胁迫相关顺式作用元件,并且预测到OsFH1、OsFH16和OsFH17定位于质膜行使功能。(4)OsFHs在不同组织的表达模式分析表明,OsFH1在根部表达水平较高,而OsFH16、OsFH17在根部表达量相对较低。综上认为,由于OsFH16、OsFH17、OsFH1之间亲缘关系较高,调控模式相近且三者都可能在细胞质膜上行使功能,因此OsFH16、OsFH17可能参与环境因素与osfh1共同改变根毛表型这一过程。该研究结果为解析环境与osfh1基因共同调控水稻根毛发育机制奠定了一定理论基础,为探索植物成蛋白基因功能提出了新方向。  相似文献   
2.
The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton.  相似文献   
3.
In the yeast Saccharomyces cerevisiae, positioning of the mitotic spindle requires both the cytoplasmic microtubules and actin. Kar9p is a novel cortical protein that is required for the correct position of the mitotic spindle and the orientation of the cytoplasmic microtubules. Green fluorescent protein (GFP)- Kar9p localizes to a single spot at the tip of the growing bud and the mating projection. However, the cortical localization of Kar9p does not require microtubules (Miller, R.K., and M.D. Rose. 1998. J. Cell Biol. 140: 377), suggesting that Kar9p interacts with other proteins at the cortex. To investigate Kar9p's cortical interactions, we treated cells with the actin-depolymerizing drug, latrunculin-A. In both shmoos and mitotic cells, Kar9p's cortical localization was completely dependent on polymerized actin. Kar9p localization was also altered by mutations in four genes, spa2Delta, pea2Delta, bud6Delta, and bni1Delta, required for normal polarization and actin cytoskeleton functions and, of these, bni1Delta affected Kar9p localization most severely. Like kar9Delta, bni1Delta mutants exhibited nuclear positioning defects during mitosis and in shmoos. Furthermore, like kar9Delta, the bni1Delta mutant exhibited misoriented cytoplasmic microtubules in shmoos. Genetic analysis placed BNI1 in the KAR9 pathway for nuclear migration. However, analysis of kar9Delta bni1Delta double mutants suggested that Kar9p retained some function in bni1Delta mitotic cells. Unlike the polarization mutants, kar9Delta shmoos had a normal morphology and diploids budded in the correct bipolar pattern. Furthermore, Bni1p localized normally in kar9Delta. We conclude that Kar9p's function is specific for cytoplasmic microtubule orientation and that Kar9p's role in nuclear positioning is to coordinate the interactions between the actin and microtubule networks.  相似文献   
4.
The very large family of Formin proteins is involved in processes such as morphogenesis, embryonic differentiation, cell polarity, and cytokinesis. A novel human gene from the Formin family, denominated human leukocyte formin gene, was cloned. The cDNA of the gene was determined to be 3959bp long with an open reading frame of 3302bp and computational analysis located this gene on chromosome 17, suggesting that it is composed of 27 exons. Northern blot analysis revealed a restricted expression of mRNA in the thymus, spleen, and peripheral blood leukocytes in normal human tissues. Western blot analysis demonstrated that the protein encoded by this gene is overexpressed in lymphoid malignancies; cancer cell lines and peripheral blood leukocyte from chronic lymphocytic leukemia (CLL) patients. Furthermore, the human leukocyte formin protein was observed to associate with Akt, a critical survival regulator in many different cell types.  相似文献   
5.
Diaphanous-related formins are eukaryotic actin nucleation factors regulated by an autoinhibitory interaction between the N-terminal RhoGTPase-binding domain (mDiaN) and the C-terminal Diaphanous-autoregulatory domain (DAD). Although the activation of formins by Rho proteins is well characterized, its inactivation is only marginally understood. Recently, liprin-α3 was shown to interact with mDia1. Overexpression of liprin-α3 resulted in a reduction of the cellular actin filament content. The molecular mechanisms of how liprin-α3 exerts this effect and counteracts mDia1 activation by RhoA are unknown. Here, we functionally and structurally define a minimal liprin-α3 core region, sufficient to recapitulate the liprin-α3 determined mDia1-respective cellular functions. We show that liprin-α3 alters the interaction kinetics and thermodynamics of mDiaN with RhoA·GTP and DAD. RhoA displaces liprin-α3 allosterically, whereas DAD competes with liprin-α3 for a highly overlapping binding site on mDiaN. Liprin-α3 regulates actin polymerization by lowering the regulatory potency of RhoA and DAD on mDiaN. We present a model of a mechanistically unexplored and new aspect of mDiaN regulation by liprin-α3.  相似文献   
6.
Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C‐terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline‐rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell‐wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin‐dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin‐remodelling mechanisms.  相似文献   
7.
8.
The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.  相似文献   
9.
The formin family of proteins promotes the assembly of linear actin filaments in the cells of diverse eukaryotic organisms. The predominant formins in mammalian cells are self‐inhibited by an intramolecular interaction between two terminal domains and are activated by the binding of the Rho GTPases and other factors. In this study, we show that Bni1p, a formin required for the assembly of actin cables in budding yeast, is also regulated by an autoinhibitory mechanism and phosphorylation by the actin regulatory kinase Prk1p, and possibly Ark1p as well, plays a key role in unlocking the inhibition. Bni1p is phosphorylated by Prk1p at three [L/V/I]xxxxTG motifs in vitro, and the phosphorylation is sufficient to activate Bni1p by disrupting its intramolecular interaction. This finding extends the roles of Prk1p in the regulation of actin dynamics to be associated with both anterograde and retrograde transport pathways, i.e. exocytosis and endocytosis, in yeast.  相似文献   
10.
Ena/VASP proteins are implicated in a variety of fundamental cellular processes including axon guidance and cell migration. In vitro, they enhance elongation of actin filaments, but at rates differing in nearly an order of magnitude according to species, raising questions about the molecular determinants of rate control. Chimeras from fast and slow elongating VASP proteins were generated and their ability to promote actin polymerization and to bind G-actin was assessed. By in vitro TIRF microscopy as well as thermodynamic and kinetic analyses, we show that the velocity of VASP-mediated filament elongation depends on G-actin recruitment by the WASP homology 2 motif. Comparison of the experimentally observed elongation rates with a quantitative mathematical model moreover revealed that Ena/VASP-mediated filament elongation displays a saturation dependence on the actin monomer concentration, implying that Ena/VASP proteins, independent of species, are fully saturated with actin in vivo and generally act as potent filament elongators. Moreover, our data showed that spontaneous addition of monomers does not occur during processive VASP-mediated filament elongation on surfaces, suggesting that most filament formation in cells is actively controlled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号