首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2008年   2篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
Steered molecular dynamics simulations have previously been used to investigate the mechanical properties of the extracellular matrix protein fibronectin. The simulations suggest that the mechanical stability of the tenth type III domain from fibronectin (FNfn10) is largely determined by a number of critical hydrogen bonds in the peripheral strands. Interestingly, the simulations predict that lowering the pH from 7 to approximately 4.7 will increase the mechanical stability of FNfn10 significantly (by approximately 33 %) due to the protonation of a few key acidic residues in the A and B strands. To test this simulation prediction, we used single-molecule atomic force microscopy (AFM) to investigate the mechanical stability of FNfn10 at neutral pH and at lower pH where these key residues have been shown to be protonated. Our AFM experimental results show no difference in the mechanical stability of FNfn10 at these different pH values. These results suggest that some simulations may overestimate the role played by electrostatic interactions in determining the mechanical stability of proteins.  相似文献   
2.
A number of β-sandwich immunoglobulin-like domains have been shown to fold using a set of structurally equivalent residues that form a folding nucleus deep within the core of the protein. Formation of this nucleus is sufficient to establish the complex Greek key topology of the native state. These nucleating residues are highly conserved within the immunoglobulin superfamily, but are less well conserved in the fibronectin type III (fnIII) superfamily, where the requirement is simply to have four interacting hydrophobic residues. However, there are rare examples where this nucleation pattern is absent. In this study, we have investigated the folding of a novel member of the fnIII superfamily whose nucleus appears to lack one of the four buried hydrophobic residues. We show that the folding mechanism is unaltered, but the folding nucleus has moved within the hydrophobic core.  相似文献   
3.
Two homologous fibronectin type III (fnIII) domains, FNfn10 (the 10th fnIII domain of human fibronectin) and TNfn3 (the third fnIII domain of human tenascin), have essentially the same backbone structure, although they share only ∼ 24% sequence identity. While they share a similar folding mechanism with a common core of key residues in the folding transition state, they differ in many other physical properties. We use a chimeric protein, FNoTNc, to investigate the molecular basis for these differences. FNoTNc is a core-swapped protein, containing the “outside” (surface and loops) of FNfn10 and the hydrophobic core of TNfn3. Remarkably, FNoTNc retains the structure of the parent proteins despite the extent of redesign, allowing us to gain insight into which components of each parent protein are responsible for different aspects of its behaviour. Naively, one would expect properties that appear to depend principally on the core to be similar to TNfn3, for example, the response to mutations, folding kinetics and side-chain dynamics, while properties apparently determined by differences in the surface and loops, such as backbone dynamics, would be more like FNfn10. While this is broadly true, it is clear that there are also unexpected crosstalk effects between the core and the surface. For example, the anomalous response of FNfn10 to mutation is not solely a property of the core as we had previously suggested.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号