首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3905篇
  免费   168篇
  国内免费   243篇
  2024年   20篇
  2023年   39篇
  2022年   56篇
  2021年   63篇
  2020年   62篇
  2019年   80篇
  2018年   105篇
  2017年   59篇
  2016年   71篇
  2015年   70篇
  2014年   234篇
  2013年   268篇
  2012年   189篇
  2011年   278篇
  2010年   208篇
  2009年   253篇
  2008年   290篇
  2007年   296篇
  2006年   240篇
  2005年   228篇
  2004年   182篇
  2003年   193篇
  2002年   163篇
  2001年   112篇
  2000年   89篇
  1999年   86篇
  1998年   59篇
  1997年   39篇
  1996年   30篇
  1995年   30篇
  1994年   26篇
  1993年   22篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   14篇
  1988年   9篇
  1987年   4篇
  1986年   8篇
  1985年   13篇
  1984年   20篇
  1983年   11篇
  1982年   7篇
  1981年   8篇
  1980年   10篇
  1979年   8篇
  1978年   5篇
  1976年   6篇
  1973年   3篇
  1972年   5篇
排序方式: 共有4316条查询结果,搜索用时 15 毫秒
1.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
2.
We examined whether actin filaments are involved in the cAMP-dependent activation of a high affinity sodium/glucose cotransporter (SGLT1) using epithelial expression systems. The expression of enhanced green fluorescent protein-tagged SGLT1 (EGFP-SGLT1) in Madin-Darby canine kidney (MDCK) cells was revealed by Western blotting and confocal laser microscopy. 8-Br-cAMP, a membrane permeable cAMP analog, enhanced [14C]-α-methyl glucopyranoside ([14C]-AMG) uptake. Both basal and 8-Br-cAMP-elicited [14C]-AMG uptakes were inhibited by N-(2{[3-(4-bromophenyl)-2-propenyl]-amino}-ethyl)-5-isoquinolinesulfonamide (H-89), a protein kinase A inhibitor, and cytochalasin D, an actin filament formation inhibitor. Furthermore, cytochalasin D inhibited the distribution of EGFP-SGLT1 at the apical surface. These results suggest that the EGFP-SGLT1 protein is functionally expressed in the apical membrane of MDCK cells, and is up-regulated by a cAMP-dependent pathway requiring intact actin filaments.  相似文献   
3.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   
4.
An ad hoc bioconjugation/fluorescence resonance energy transfer (FRET) assay has been designed to spectroscopically monitor the quaternary state of human thymidylate synthase dimeric protein. The approach enables the chemoselective engineering of allosteric residues while preserving the native protein functions through reversible masking of residues within the catalytic site, and is therefore suitable for activity/oligomerization dual assay screenings. It is applied to tag the two subunits of human thymidylate synthase at cysteines 43 and 43′ with an excitation energy donor/acceptor pair. The dimer–monomer equilibrium of the enzyme is then characterized through steady‐state fluorescence determination of the intersubunit resonance energy transfer efficiency.  相似文献   
5.
A selective procedure using synthetic substrates for determination of exo-1,4,-beta-glucanases in a mixture of exoglucanases , endoglucanases , and beta-glucosidases is formulated. The heterobiosides , p- nithrophenyl -beta-D- cellobioside ( pNPC ) or p-nitrophenyl-beta-D-lactoside ( pNPL ), were used as selective substrates for the measurement of exoglucanase activity. The exoglucanases (especially cellobiohydrolases , which split off cellobiose units from the nonreducing end of the cellulose chain) specifically act on the agluconic bond (between p-nitrophenyl and the disaccharide moiety) and not on the holosidic bond (between the two glucose units of cellobiose). The interfering effect of beta-glucosidase, which acts on both agluconic and holosidic bonds, is overcome by the addition of D-glucono-1,5-delta-lactone, a specific inhibitor of beta-glucosidases. The interference of endoglucanases , which also act on both agluconic and holosidic bonds, can be compensated for by prior standardization of the assay procedure with a purified endoglucanase from the studied mixture of cellulases.  相似文献   
6.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
7.
Expression of alternatively spliced mRNA variants at specific stages of development or in specific cells and tissues contributes to the functional diversity of the human genome. Aberrations in alternative splicing were found as a cause or a contributing factor to the development, progression, or maintenance of numerous diseases. The use of antisense oligonucleotides (ON) to modify aberrant expression patterns of alternatively spliced mRNAs is a novel means of potentially controlling such diseases. Oligonucleotides can be designed to repair genetic mutations, to modify genomic sequences in order to compensate for gene deletions, or to modify RNA processing in order to improve the effects of the underlying gene mutation. Steric block ON approach have proven to be effective in experimental model for various diseases. Here, we describe our experience in investigating two strategies for ON delivery: ON conjugation with basic peptides and lipid-based particulate system (lipoplex). Basic peptides or Cell Penetrating Peptides (CPP) such as the TAT-derived peptide appear to circumvent many problems associated with ON and drug delivery. This strategy may represent the next paradigm in our ability to modulate cell function and offers a unique avenue for the treatment of disease. Lipoplexes result from the intimate interaction of ON with cationic lipids leading to ON carrying particles able to be taken up by cells and to release ON in the cytoplasm. We have used as an experimental model the correction of a splicing alteration of the mutated β-globin intron causing thalassemia. Data on cell penetration and efficacy of correction of specific steric block ON delivered either by basic peptides or lipoplex are described. A comparison of the properties of both delivery systems is made respective to the use of this new class of therapeutic molecules.  相似文献   
8.
Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a ‘module’, can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism.  相似文献   
9.
The main product of the reaction of fluorescein isothiocyanate (FITC) and bungarotoxin (Bgt) under near stoichiometric conditions is a monofluorescein derivative preferentially labeled at Lys 26, a highly conserved residue known to be involved in the binding (McDaniel, C. S., Manshouri, T., and Atassi, M. Z. (1987)J. Prot. Chem. 6, 455–461; Garcia-Borron, J. C., Bieber, A. L., and Martinez-Carrion, M. (1987)Biochemistry 26, 4295–4303) of postsynaptic neurotoxins specific for the nicotinic acetylcholine receptor (AcChR). The fluorescently labeled toxin retains a high affinity for the AcChR, and an unaltered specificity. Binding of FITC-Bgt to AcChR results in a significant decrease in the fluorescence intensity of the probe. This AcChR-mediated quenching of FITC-Bgt fluorescence allows for a continuous monitoring of the binding process. The quenching of free and bound FITC-Bgt by charged and neutral quenchers shows few fluorophore accessibility changes as induced by the toxin-bound state. The results are consistent with a model in which the positively charged concave surface of the toxin interacts with a negatively charged complementary surface in the receptor molecule.  相似文献   
10.
The fluorescent probe 9-amino-6-chloro-2-methoxy acridine was used to study the energy transduction in the thylakoid and cell membranes of the cyanobacterium Plectonema boryanum. Apart from light-driven electron transfer, the dark endogenous respiration also leads to energization resulting in an ACMA fluorescence response, that is sensitive to the electron flow inhibitor 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, to the energy transfer inhibitors dicyclohexylcarbodiimide and venturicidine and to the uncoupler 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide.In spheroplasts, in which the cell membranes have lost their capacity to maintain a proton gradient, the respiration-and light-induced ACMA fluorescence changes (quenching) are similar to those in chloroplasts. In intact cells a combination of reversible quenching and enhancement of ACMA fluorescence was found. This dualistic behaviour is supposedly caused by an opposite orientation of the thylakoid and cell membranes. ACMA quenching at the level of the thylakoids was obtained either by respiratory or photosynthetic electron transfer and gave similar responses to those obtained in the spheroplasts. The slower ACMA fluorescence enhancement, only observed in cells with intact cell membranes, also evoked by both respiration and light-induced energization is sensitive to the compounds mentioned above and in addition to KCN.Our results support the view [8] that dark oxidation of substrates by O2 proceeds via the thylakoid membrane and terminates at a CN- sensitive oxidase located in the cell membrane which requires the involvement of a mobile cytoplasmic redox mediator.Abbreviations ACMA 9-amino-6-chloro-2-methoxy acridine - chl a chlorophyll a - DBMIB 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DNP dinitrophenol - DNP-INT dinitrophenyl ether of 2-iodo-4-nitrothymol - FCCP carbonylcyanide-p-trifluoro-methoxy phenylhydrazone - S-13 5-chloro-3-t-butyl-2-chloro-4-nitrosalicylanilide - tricine N-2 (2-Hydroxy-1, 1-bis (hydroxymethyl) ethyl)-glycine - Tris Tris (hydroxymethyl) amino methane  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号