首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2743篇
  免费   201篇
  国内免费   101篇
  3045篇
  2023年   55篇
  2022年   63篇
  2021年   89篇
  2020年   82篇
  2019年   83篇
  2018年   88篇
  2017年   84篇
  2016年   87篇
  2015年   92篇
  2014年   153篇
  2013年   146篇
  2012年   123篇
  2011年   115篇
  2010年   109篇
  2009年   136篇
  2008年   137篇
  2007年   158篇
  2006年   128篇
  2005年   119篇
  2004年   96篇
  2003年   75篇
  2002年   89篇
  2001年   67篇
  2000年   75篇
  1999年   40篇
  1998年   46篇
  1997年   39篇
  1996年   54篇
  1995年   46篇
  1994年   45篇
  1993年   33篇
  1992年   31篇
  1991年   35篇
  1990年   27篇
  1989年   21篇
  1988年   18篇
  1987年   18篇
  1986年   23篇
  1985年   13篇
  1984年   23篇
  1983年   17篇
  1982年   19篇
  1981年   11篇
  1980年   10篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
排序方式: 共有3045条查询结果,搜索用时 16 毫秒
1.
Shatsky  I. N. 《Molecular Biology》2001,35(4):536-543
Papers on the mechanisms of translation initiation in mammals studied by reconstruction of initiation complexes from individual components are reviewed. The author points to the constraints of this approach and to the pitfalls ignoring which one might come to erroneous conclusions and even artifacts. In addition, some methods employed in the field as well as some technical problems are discussed in the paper, together with the means of obviating them. The review could be a guidebook for newcomers into this quite labor-consuming field.  相似文献   
2.
Flowering plants display spectacular floral diversity and a bewildering array of reproductive adaptations that promote mating, particularly outbreeding. A striking feature of this diversity is that related species often differ in pollination and mating systems, and intraspecific variation in sexual traits is not unusual, especially among herbaceous plants. This variation provides opportunities for evolutionary biologists to link micro-evolutionary processes to the macro-evolutionary patterns that are evident within lineages. Here, I provide some personal reflections on recent progress in our understanding of the ecology and evolution of plant reproductive diversity. I begin with a brief historical sketch of the major developments in this field and then focus on three of the most significant evolutionary transitions in the reproductive biology of flowering plants: the pathway from outcrossing to predominant self-fertilization, the origin of separate sexes (females and males) from hermaphroditism and the shift from animal pollination to wind pollination. For each evolutionary transition, I consider what we have discovered and some of the problems that still remain unsolved. I conclude by discussing how new approaches might influence future research in plant reproductive biology.  相似文献   
3.
RegB is involved in the control of the phage T4 life cycle. It inactivates the phage early mRNAs when their translation is no more required. We determined its structure and identified residues involved in substrate binding. For this, all backbone and 90% of side-chain resonance frequencies were assigned.  相似文献   
4.
The involvement of gibberellins in the control of flowering of sunflower was studied by direct application of GA3 to the apex of the plants, analysis of the endogenous levels of gibberellin-like substances at different plant ages, and indirectly by the application of paclobutrazol, an inhibitor of gibberellin synthesis. GA3 speeded-up flower initiation and floral apex development. The time of GA3 application was more critical than the amount of GA3 applied. The endogenous levels of gibberellin-like compounds increased significantly by day 15 after sowing. The application of paclobutrazol markedly delayed floral initiation and this effect was also depedent on plant age. Both GA3 and paclobutrazol had their greatest effects between 10 and 20 days after sowing suggesting that an increase in gibberellins in that time period plays a role in floral initiation.  相似文献   
5.
6.
《Molecular cell》2021,81(17):3576-3588.e6
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   
7.
Morphological studies were carried out with peach flower buds collected monthly in 1989 and 1990, from two months before leaf fall (7 March) until two to three weeks before bloom (7/8 August). Chilled (2–4°C for 30 days) and unchilled buds were exposed to 20 to 25°C, 100% RH and continuous light. Gibberellin A3 (3 ng or 30 ng) was applied to some of the non-chilled cuttings at three days intervals. Then, 12, 19, and 26 days after they were planted, the buds were sampled and processed for histological studies. Cultured flower buds (chilled or unchilled) had accelerated anther and gynoecium morphogenesis after 12 days under controlled conditions, compared to buds processed immediately after collection from the field. Chilling treatment augmented the bud culture effect, while Gibberellin A3 applications to the excised buds retarded bud morphogenesis to a stage comparable to that of buds collected directly from the field. This, suggests that the comparatively high levels of Gibberellin A1/3 we previously found in mid winter [15, 18] could be at least one of the factors that controls floral bud dormancy by retarding anther and gynoecium development.  相似文献   
8.
Aqueous extracts of smoke, derived from Themeda triandra, a fire-climax grass, and Passerina vulgaris, a fynbos plant, stimulated the growth of primary root sections of tomato roots in suspension culture. The optimal dilution for both extracts was 1:2000. Several of the fractions obtained from TLC separation of the Themeda and the Passerina extracts significantly promoted primary root growth. The auxins naphthaleneacetic acid (NAA), indolebutyric acid (IBA) and indoleacetic acid (IAA) were found to stimulate the growth of the primary root axis, with IAA and NAA significantly promoting lateral root number. Similarly, the naturally occurring cytokinins, zeatin and its derivatives (zeatin-O-glucoside; dihydrozeatin and zeatin riboside) stimulated primary root length. Zeatin and dihydrozeatin promoted secondary root growth, but only at very low concentrations.  相似文献   
9.
A. Schulz 《Protoplasma》1986,130(1):12-26
Summary 48 hours after interrupting the root stele ofPisum, wound phloem initiated (proximally or distally to the wound) to reconnect the vascular stumps was found to contain some nucleate wound-sieve elements. At the elongating end of an incomplete wound-sieve tube these elements exhibit a sequence of ultrastructural changes as known from protophloem-sieve tubes. Elongation occurs by the addition of newly divided (wound-) sieve-element/companion-cell complexes. In order to dedifferentiate and assume a new specialization formerly quiescent stelar or cortical cells require at least one (mostly more) preliminary division. Companion cells are consequently obligatory sister cells to wound-sieve elements.By reconstruction using serial sections it could be shown that wound-sieve tubes elongate bidirectionally, starting in an early activated procambial cell of the stele. The elongation is directed by the existence of plasmodesmata, preferably when lying in primary pit fields, and by the plane of preceding divisions. Thus, the developing wound-sieve tube can deviate from the damaged bundle and radiate into the cortex as soon as the plane of the preceding divisions is favourable. In the opposite direction, elongating wound-sieve tubes run parallel to pre-existing phloem traces, thus broading their base at the bundle for the deviating part of the wound-sieve tube. Frequently an individual wound-sieve tube is supplemented at the bundle by a further wound-sieve tube which is partly running parallel to it. Both sieve tubes are interlinked with sieve plates by three-poled sieve elements.Ultrastructurally, the developmental changes of nucleate wound-sieve elements follow the known pattern. In spite of its contrasting origin and odd shape a mature wound-sieve element eventually has the same contents as regular sieve elements: sieve-element plastids, mitochondria, stacked ER and small amounts of P-protein within an electronlucent cytoplasm.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号