首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   1篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Dissolved organic carbon (DOC) is the dominant form of carbon in transport in blackwater rivers, and bacteria are the major biological agents of its utilization. This study describes longitudinal patterns in DOC concentration and relates them to suspended bacterial populations in the channel. Concentrations of total DOC, three molecular weight fractions, and bacterial numbers were determined at 12 sites along the Ogeechee River in 1985–1986 and 1989 during periods of low and high discharge. Suspended bacterial populations were compared with DOC concentrations to determine if differences in bacterial abundance were related to longitudinal patterns of DOC concentration. Three distinct longitudinal patterns were observed: (1) The longitudinal pattern followed by both total and intermediate molecular weight DOC concentrations was a linear function of the geographic distance along the river. (2) During low flow conditions, there was a high degree of correspondence between patterns of bacterial numbers and low MW DOC (< 1000 apparent MW). (3) During periods of high discharge, the proportion of high (> 10,000) and intermediate (1000–10,000) MW fractions increased, and there was no longer a clear relationship between bacterial cells and low MW DOC.  相似文献   
2.
The river–floodplain network plays an important role in the carbon (C) cycle of the Amazon basin, as it transports and processes a significant fraction of the C fixed by terrestrial vegetation, most of which evades as CO2 from rivers and floodplains back to the atmosphere. There is empirical evidence that exceptionally dry or wet years have an impact on the net C balance in the Amazon. While seasonal and interannual variations in hydrology have a direct impact on the amounts of C transferred through the river–floodplain system, it is not known how far the variation of these fluxes affects the overall Amazon C balance. Here, we introduce a new wetland forcing file for the ORCHILEAK model, which improves the representation of floodplain dynamics and allows us to closely reproduce data‐driven estimates of net C exports through the river–floodplain network. Based on this new wetland forcing and two climate forcing datasets, we show that across the Amazon, the percentage of net primary productivity lost to the river–floodplain system is highly variable at the interannual timescale, and wet years fuel aquatic CO2 evasion. However, at the same time overall net ecosystem productivity (NEP) and C sequestration are highest during wet years, partly due to reduced decomposition rates in water‐logged floodplain soils. It is years with the lowest discharge and floodplain inundation, often associated with El Nino events, that have the lowest NEP and the highest total (terrestrial plus aquatic) CO2 emissions back to atmosphere. Furthermore, we find that aquatic C fluxes display greater variation than terrestrial C fluxes, and that this variation significantly dampens the interannual variability in NEP of the Amazon basin. These results call for a more integrative view of the C fluxes through the vegetation‐soil‐river‐floodplain continuum, which directly places aquatic C fluxes into the overall C budget of the Amazon basin.  相似文献   
3.
The principles of island biogeography are rarely applied to the animal assemblages of Amazonian river islands. Here, we compare bird assemblages of Amazonian river islands with a variety of mainland habitats. We also examine how bird species diversity and composition are related to island physical attributes. Birds were sampled with mist nets and qualitative censuses on 11 river islands and 24 mainland sites on the lower reaches of the Rio Negro in the Brazilian Amazon. Island bird assemblages were characterized by lower species richness and a higher abundance of a few dominant species. Additionally, the species composition of the islands was distinct from that of the mainland, including the nearby floodplain habitats. The number of bird species increased with island size and habitat diversity, and decreased with degree of isolation. In addition, small islands tended to harbor an impoverished subset of the species present on larger ones. Bird species diversity and composition on Amazonian river islands are likely influenced by the ecological succession and historical events affecting island formation. Considering their small total area across the Amazon basin, these insular fluvial communities could be disproportionately threatened by river channel disturbances related to climate change or hydroelectric dam development. Abstract in Portughese is available with online material.  相似文献   
4.
This paper examines small-scale fish vending in a southern African floodplain from two perspectives: as a link between natural resource use and consumption, and as a livelihood in itself. We used a combination of observation, surveys and semistructured interviews in a market in Katima Mulilo, Namibia, to determine sources of fish, preferences and constraints to vending, average investment and profit, as well different routes into fish vending and perceptions regarding vending. Most vendors come from fishing households, but their stock is often an accumulation of purchases from other fishers. There is little evidence of formal arrangements between fishers and vendors, yet most adapt to the highly variable natural and social environments of the region. Although all vendors ranked selling fish as their most important livelihood activity, a wide range of investment and profit exists among individuals. Our findings indicate that fisheries management proposed for the area must be developed with a careful understanding of how changes in access and use will affect vending livelihoods.
John PurvisEmail:
  相似文献   
5.
Summary Large overbank flood events play an important role in maintaining large‐scale ecological processes and connectivity along and across the floodplains and between the rivers and their floodplains in the southern Murray‐Darling Basin. However, the regulation of rivers means that extensive overbank flooding can only occur in the rare circumstance of extreme flood events. Recent environmental water allocations have focussed on the largest floodplain blocks (‘icon’ sites) and a small set of specific values (e.g. colonial nesting waterbirds), as well as on trialling fine‐scale manipulation of infrastructure (e.g. pumping) to water relatively small areas. There has been no comprehensive systematic assessment of the entire floodplain and its wider set of flood‐dependent natural assets (such as ecosystems and species; herein referred to as ‘natural values’) to maximise the effectiveness of environmental water use and to catalogue values likely to be lost. This paper describes an assessment of some 220 000 ha found to support flood‐dependent natural values in Victoria. We mapped the geographic distribution and estimated components of the flooding requirements (natural flooding frequency, and maximum period without flooding and minimum duration of each flooding event before significant deterioration) for each natural value. Using an example of one stretch of the River Murray, we show how the resultant spatial data can be used with floodplain inundation modelling to compare the outcomes of real or planned environmental watering events; potentially providing tools for management agencies to conserve a wider range of floodplain values than is currently the case. That is, water managers and the public can see what ecosystems and threatened species are intended to be maintained by environmental watering and what values are intended to be abandoned across the whole floodplain, rather than just seeing the small subset of values and ‘icon’ sites that are intended to be maintained. Examples are provided to illustrate how information about the location, water requirements and extent covered by potential floods for specific values can be used to build adaptive watering strategies for areas as large as the whole floodplain.  相似文献   
6.
Land-use changes in a forested floodplain’s watershed can lead to incremental changes in the hydrology and sedimentation rates of the floodplain. The impacts of these changes can be difficult to measure due to the slow response time of mature trees. Seedlings and saplings, on the other hand, may show an immediate response. Responses during these early life history stages can have major consequences for regeneration of floodplain forests and ultimately result in community alteration. This study tested the importance of changes in hydrology and sedimentation on the germination and growth rates of three common floodplain tree species: Acer rubrum, Fraxinus pennsylvanica and Quercus palustris. Two-year-old saplings were grown in a greenhouse under two hydrologic regimes, with or without the addition of sediment. Neither periodic flooding with or without sediment nor static flooding on its own affected the growth of the seedlings. With the addition of sediment, static flooding for two weeks lead to a significant decrease in sapling growth. There was a significant species x treatment interaction, suggesting that each species responded differently to the application of flooding and sediment. The timing of germination and the total percent germination for F. pennsylvanica and Q. palustris seeds were tested under the same conditions. Flooding and sediment acted in an additive manner to delay the germination of both F. pennsylvanica and Q. palustris and to reduce the total germination rate of Q. palustris. There was no difference in the total germination rate of F. pennsylvanica seeds under any treatment. During the growth trials, adventitious roots sprouted on saplings grown under sedimentation. Adventitious roots growing into sediment rather than floodwater should be able to utilize the sediment’s nutrients and may compensate for some of the stress of flooding. The results of this study suggest that sediment tolerances will vary among species, but will not necessarily correlate with flood tolerances, and that sedimentation may be as important as flooding in determining floodplain plant community composition.  相似文献   
7.
During the last 200 years, the riparianecosystem along major rivers has been reducedto a few scattered remnants. Important elementsof the riparian ecosystem are water bodieswhich were originally connected to the mainriver channel by annual floodings. Due to riverregulations many of these remnants are nowvirtually isolated. In an allozyme analysisusing roach, Rutilus rutilus, as a studyspecies we demonstrate that the geneticdiversity (number of alleles per locus,expected heterozygosity) of populations livingwithin floodplain water bodies is not severelyimpoverished compared to the genetic diversitywithin the main river channel. However, wefound slight differences in the allelefrequencies of flood plain water bodies and themain river channel. Nevertheless, fishpopulations in floodplain water bodies mayserve as reservoirs of autochthonous geneticmaterial for restoration of fish populations inthe main river channel after populationextinction due to catastrophic accidents (e.g.industrial pollution).  相似文献   
8.
9.
High rainfall and its seasonal distribution cause periodic flooding of large areas in tropical South America. Floods result from lateral overflow of streams and rivers, or from sheet-flooding by rains as a consequence of poor drainage. Depending upon the size of the catchment area, flooding can occur with one peak (e.g., in the Amazon River and its large affluents) or in many peaks (e.g., in streams and small rivers).Vegetation cover of floodplains varies from different types of savannas and aquatic macrophyte communities to forests depending upon the hydrologic regime and local rainfall. Large differences exist in primary and secondary production due to large differences in nutrient levels in water and soils.An attempt is made to characterize the floodplains according to their hydrologic regimes, vegetation cover and nutrient status. The areal extent of different types of floodplains is estimated. The human impact is also evaluated.From a paper presented at the Third International Wetlands Conference, 19–23 September, 1988, University of Rennes, France.  相似文献   
10.
Installation of feral pig (Sus scrofa) exclusion fences to conserve and rehabilitate coastal floodplain habitat for fish production and water quality services remains untested. Twenty‐one floodplain and riverine wetlands in the Archer River catchment (north Queensland) were surveyed during postwet (June–August) and late‐dry season (November–December) in 2016, 2017, and 2018, using a fyke net soaked overnight (~14–15 hr) to test: (a) whether the fish assemblage are similar in wetlands with and without fences; and (b) whether specific environmental conditions influence fish composition between fenced and unfenced wetlands. A total of 6,353 fish representing twenty‐six species from 15 families were captured. There were no wetland differences in fish assemblages across seasons, years and for fenced and unfenced (PERMANOVA, Pseudo‐F < 0.589, p < .84). Interestingly, the late‐dry season fish were far smaller compared to postwet season fish: a strategy presumably in place to maximize rapid disposal following rain and floodplain connectivity. In each wetland, a calibrated Hydrolab was deployed (between 2 and4 days, with 20 min logging) in the epilimnion (0.2 m) and revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH (conductivity represented freshwater wetlands), which was more obvious in the late‐dry season survey because of extreme summer conditions. Water quality varied among wetlands in terms of the daily amplitude and extent of daily photosynthesis recovery, which highlights the need to consider local conditions and that applying general assumptions around water quality conditions for these types of wetlands is problematic for managers. Though many fish access wetlands during wet season connection, the seasonal effect of reduced water level conditions seems more overimprovised when compared to whether fences are installed, as all wetlands supported few, juvenile, or no fish species because they had dried completely regardless of the presence of fences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号