首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3148篇
  免费   387篇
  国内免费   127篇
  3662篇
  2024年   8篇
  2023年   49篇
  2022年   57篇
  2021年   101篇
  2020年   113篇
  2019年   150篇
  2018年   109篇
  2017年   117篇
  2016年   153篇
  2015年   181篇
  2014年   171篇
  2013年   172篇
  2012年   171篇
  2011年   165篇
  2010年   139篇
  2009年   167篇
  2008年   154篇
  2007年   184篇
  2006年   130篇
  2005年   113篇
  2004年   104篇
  2003年   87篇
  2002年   107篇
  2001年   95篇
  2000年   82篇
  1999年   79篇
  1998年   72篇
  1997年   66篇
  1996年   56篇
  1995年   52篇
  1994年   46篇
  1993年   35篇
  1992年   43篇
  1991年   32篇
  1990年   15篇
  1989年   21篇
  1988年   15篇
  1987年   11篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有3662条查询结果,搜索用时 15 毫秒
1.
2.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
3.
4.
5.
Variation in copulation duration of Drosophila mojavensisstrains was influenced by both sexes. Males maintained predominant control, as copulation duration of pairs from different strains was more similar to that of the strain from which the male was derived, but female origin also contributed significantly to the duration of copulation. Variation among strains was controlled by genes acting additively in both sexes. The size of both males and females also affected copulation duration. Small males copulated longer on average than large males, while males paired with large females copulated longer than those paired with small females. The importance of copulation duration to fitness was tested by correlation analyses with male size, female size, female remating latency, and number of eggs laid prior to female remating. Longer copulations stimulated earlier oviposition, possibly by increasing accessory gland secretions that are passed by males during copulation.  相似文献   
6.
In this paper, we study a two-species competitive system where both the species produce toxin against each other at some cost to their growth rates. A much wider set of outcomes is possible for our system. These outcomes are important contrasts to competitive exclusion or bistable attractors that are often the outcomes for competitive systems. We show that toxin helps to gain an advantage in competition for toxic species whenever the cost of toxin production remains within some moderate value; otherwise it may result in the extinction of the species itself.  相似文献   
7.
Human cognitive ability shows consistent, positive associations with fitness components across the life-course. Underlying genetic variation should therefore be depleted by selection, which is not observed. Genetic variation in general cognitive ability (intelligence) could be maintained by a mutation–selection balance, with rare variants contributing to its genetic architecture. This study examines the association between the total number of rare stop-gain/loss, splice and missense exonic variants and cognitive ability in childhood and old age in the same individuals. Exome array data were obtained in the Lothian Birth Cohorts of 1921 and 1936 (combined N = 1596). General cognitive ability was assessed at age 11 years and in late life (79 and 70 years, respectively) and was modelled against the total number of stop-gain/loss, splice, and missense exonic variants, with minor allele frequency less than or equal to 0.01, using linear regression adjusted for age and sex. In both cohorts and in both the childhood and late-life models, there were no significant associations between rare variant burden in the exome and cognitive ability that survived correction for multiple testing. Contrary to our a priori hypothesis, we observed no evidence for an association between the total number of rare exonic variants and either childhood cognitive ability or late-life cognitive ability.  相似文献   
8.
Many investigators categorize individuals from hybrid zones to facilitate comparisons among genotypic classes (e.g., parental, F1, backcross) for comparative studies in which components of fitness or geographic variation are being analyzed. Frequently, multiple character sets representing genetically independent traits are used to classify these individuals and various methodologies are employed to combine the classifications obtained from the different character sets. We adapted the principles of total evidence and taxonomic congruence (two formalized approaches used by systematists in formulating phylogenetic hypotheses) to address the problem of discriminating hybridizing species and classifying individuals from hybrid zones. As our model, we used two morphological (coloration and morphometric) and two molecular (allozyme and mitochondrial DNA restriction-fragment-length polymorphism) character sets that differentiate two stone crab species (Menippe adina and M. mercenaria). Using principal-components analysis, we determined that combining character sets and eliminating characters or character sets that did not have large eigenvector coefficients for the principal component that best separated the two species yielded the highest level of discrimination between species and allowed us to classify a broad range of morpho-genotypes as hybrids. For the stone crabs, three diagnostic allozyme loci and five diagnostic coloration characters best separated the species. The two character sets were not completely congruent, but they agreed in their classification of 50% of the individuals from the hybrid zone and rarely strongly disagreed in their classifications. Classification discrepancies between the two character sets probably represent variation between traits in interspecific gene flow rather than intraspecific, ecologically mediated variation. Our results support the assertions of previous investigators who espoused the benefits associated with using multiple character sets to classify individuals from hybrid zones and demonstrate that, if character sets are reasonably congruent and numerically balanced, combining diagnostic characters from multiple character sets (a total-evidence approach) can enhance discriminatory power between species and facilitate the assignment of hybrid-zone individuals to genotypic classes. On the contrary, classifying hybrid-zone individuals using character sets separately (a taxonomic-congruence approach) provides the opportunity to compare levels of introgression between species and to assess reasons for discordance among the data sets.  相似文献   
9.
The pink, tubular, nectariferous flowers of Melocactus intortus (Cactaceae) in Puerto Rico are visited by native hummingbirds (Anthracothorax dominicus), but also by invasive honeybees (Apis mellifera) and ants (Solenopsis sp.). We sought to determine if the bees and ants significantly alter the pollination of M. intortus by measuring pollinator effectiveness. Using traditional estimates of effectiveness (visitation rate and seed set), our results show that hummingbirds were the most effective pollinators as expected. Bees and ants were less effective, and their contributions were one‐fourth to one‐tenth of that observed for hummingbirds. We then modified this measure of effectiveness by adding two components, fitness of progeny and temporal availability of visitors, both of which refine estimates of flower visitor effectiveness. With these new estimations, we found that the effectiveness values of all three animal visitors decreased; however, the role of hummingbirds as the principal pollinator was maintained, whereas the effectiveness values of bees and ants approached zero. By these new measures of overall pollinator effectiveness, the invasive honeybees and ants have little effect on the reproductive success of M. intortus.  相似文献   
10.
《Current biology : CB》2020,30(22):4441-4453.e4
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号