首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   19篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   6篇
  2016年   9篇
  2015年   16篇
  2014年   19篇
  2013年   19篇
  2012年   11篇
  2011年   18篇
  2010年   12篇
  2009年   12篇
  2008年   14篇
  2007年   26篇
  2006年   11篇
  2005年   10篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   5篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有251条查询结果,搜索用时 31 毫秒
1.
2.
Summary The distribution of parvalbumin (PV) within neurons of the vocal motor nucleus hyperstriatum ventralepars caudalis (HVc) was investigated in the forebrain of adult male zebra finches by means of light and electron microscopy using the indirect immunoperoxidase technique. Parvalbumin-reaction product was located in the amorphous material of perikarya, dendrites and nuclei, and associated to microtubuli, postsynaptic densities and intracellular membranes; it was found in some axons and Gray type-2 boutons, but rarely in type-1 boutons and never in the Golgi apparatus. These observations suggest that parvalbumin may regulate calcium-dependent processes at the postsynaptic membrane and in the cytosol. Furthermore, the partial association of parvalbumin to microtubuli points to an involvement in calcium-dependent tubular functions. Calcium currents and microtubular assembly or transport may be relevant for the known functions of HVc in song learning.  相似文献   
3.
We investigated the development of spiny neurons in the lateral magnocellular nucleus of the anterior neostriatum before, during, and after song learning in male zebra finches (Taeniopygia guttata). The frequency of dendritic spines, dendritic field size, and branching characteristics were quantified at different ages in Golgi-stained tissue using a three-dimensional computerized tracing system. During development, overall spine frequencies increase between 3 and 5 weeks and decrease thereafter. In particular, spine frequencies of middle segments decrease significantly by 14% between 5 and 7 weeks posthatching (p = 0.017). A further reduction of 48% occurs between 7 weeks and adulthood (p < 0.001), resulting in a spine reduction of 56% on middle segments between 35 days of age and adulthood. In addition to the reduction of spine frequencies, we find regressive events also on some of the neuronal parameters that we have quantified. In general, dendrites of adult animals terminate closer to the cell body than those of 7-, 5-, or 3-week-old birds. Whereas no changes in segment length of first- and second-order dendrites have been identified, third-order dendrites end 19% closer to the cell body in adults than in younger birds (p < 0.024). Second-order dendrites in adult animals branch less frequently than in 3-week-old animals (35%, p = 0.017). There is also a trend of a smaller number of tertiary branches in adulthood compared with 3-week-old birds (41%, p = 0.060). The morphological changes may be related to the function of this nucleus and the sensitive phase for song acquisition. © 1995 John Wiley & Sons, Inc.  相似文献   
4.
In order to determine the critical period(s) during which estrogen alters sexually dimorphic behavior and neuroanatomy in zebra finches (Poephila guttata), nestlings were injected daily 20 μg estradiol benzoate (EB) during posthatching week 1, week 2, week 3, or weeks 1, 2, and 3. At 7 months of age, birds were implanted with testosterone propionate and tested with female partners for singing, dancing, and copulatory mounting. Brains were subsequently processed for morphometry, and the volumes of the song system nuclei HVC, area X, and RA and the soma sizes and densities of neurons in RA were determined. Males given EB during week 1 failed to mount. Females given EB during week 1 were fully masculinized with respect to dancing and RA neuron soma size and density, and were partially masculinized with respect to song nuclei volumes and singing. Treatment beginning after week 1 was ineffective or less effective for all measures. Only for RA neuron measures was treatment for all three weeks more effective than week 1 treatment. Thus the first post-hatching week is the most influential period of those tested for effects of exogenous estrogen on sexual differentiation in this species, and is a period during which both masculinization of females and demasculinization of males is possible. 1994 John Wiley & Sons, Inc.  相似文献   
5.
Male zebra finches normally learn their song from adult models during a restricted period of juvenile development. If song models are not available then, juveniles develop an isolate song which can be modified in adulthood. In this report we investigate the features of juvenile experience that underly the timing of song learning. Juvenile males raised in soundproof chambers or in visual isolation from conspecifics developed stable isolate song. However, whereas visual isolate song notes were similar to those of colony-reared males, soundproof chamber isolates included many phonologically abnormal notes in their songs. Despite having stable isolate songs, both groups copied new notes from tutors presented to them in adulthood (2.7 notes per bird for soundproof chamber isolates, 4.4 notes per bird for visual isolates). Old notes were often modified or eliminated. We infer that social interactions with live tutors are normally important for closing the sensitive period for song learning. Lesions of a forebrain nucleus (IMAN) had previously been shown to disrupt juvenile song learning, but not maintenance of adult song for up to 5 weeks after surgery. In this study, colony-reared adult males given bilateral lesions of IMAN retained all their song notes for up to 4–7.5 months after lesioning. However, similar lesions blocked all song note acquisition in adulthood by both visual and soundproof chamber isolates. Other work has shown that intact hearing is necessary for the maintenance of adult zebra finch song. We infer that auditory pathways used for song maintenance and acquisition differ: IMAN is necessary for auditorily guided song acquisition—whether by juveniles or adults—but not for adult auditorily guided song maintenance. © 1993 John Wiley & Sons, Inc.  相似文献   
6.
Renewed debate over what benefits females might gain from producing extra‐pair offspring emphasizes the possibility that apparent differences in quality between within‐pair and extra‐pair offspring are confounded by greater maternal investment in extra‐pair offspring. Moreover, the attractiveness of a female''s social mate can also influence contributions of both partners to a reproductive attempt. Here, we explore the complexities involved in parental investment decisions in response to extra‐pair offspring and mate attractiveness with a focus on the female point of view. Adult zebra finches paired and reproduced in a colony setting. A male''s early‐life diet quality and his extra‐pair reproductive success were used as metrics of his mating attractiveness. Females paired with males that achieved extra‐pair success laid heavier eggs than other females and spent less time attending their nests than their mates or other females. Extra‐pair nestlings were fed more protein‐rich hen''s egg than within‐pair nestlings. Females producing extra‐pair offspring had more surviving sons than females producing only within‐pair offspring. Collectively, results show that females differentially allocate resources in response to offspring extra‐pair status and their social mate''s attractiveness. Females may also obtain fitness benefits through the production of extra‐pair offspring.  相似文献   
7.
Global warming increasingly challenges thermoregulation in endothermic animals, particularly in hot and dry environments where low water availability and high temperature increase the risk of hyperthermia. In birds, un-feathered body parts such as the head and bill work as ‘thermal windows’, because heat flux is higher compared to more insulated body regions. We studied how such structures were used in different thermal environments, and if heat flux properties change with time in a given temperature. We acclimated zebra finches (Taeniopygia guttata) to two different ambient temperatures, ‘cold’ (5 °C) and ‘hot’ (35 °C), and measured the response in core body temperature using a thermometer, and head surface temperature using thermal imaging. Birds in the hot treatment had 10.3 °C higher head temperature than those in the cold treatment. Thermal acclimation also resulted in heat storage in the hot group: core body temperature was 1.1 °C higher in the 35 °C group compared to the 5 °C group. Hence, the thermal gradient from core to shell was 9.03 °C smaller in the hot treatment. Dry heat transfer rate from the head was significantly lower in the hot compared to the cold treatment after four weeks of thermal acclimation. This reflects constraints on changes to peripheral circulation and maximum body temperature. Heat dissipation capacity from the head region increased with acclimation time in the hot treatment, perhaps because angiogenesis was required to reach peak heat transfer rate. We have shown that zebra finches meet high environmental temperature by heat storage, which saves water and energy, and by peripheral vasodilation in the head, which facilitates dry heat loss. These responses will not exclude the need for evaporative cooling, but will lessen the amount of energy expend on body temperature reduction in hot environments.  相似文献   
8.
成年雄性鸣禽的习得性发声信号——长鸣(long call)和鸣唱(song)是由前脑高级发声中枢启动,以及由前脑最后一级输出核团弓状皮质栎核(robust nucleus of the arcopallium,RA)整合输出.RA投射神经元与位于中脑的基本发声中枢丘间复合体背内侧核(dorsomedial nucleus of the intercollicular,DM)形成突触连接.该文采用电损毁与声谱分析相结合的方法,通过依次损毁成年雄性斑胸草雀(Taeniopygia guttata)单侧RA和DM核团,探讨了前脑和中脑对习得性发声的影响.结果提示,RA核团与DM核团共同参与了对雄性斑胸草雀习得性声音的调控,而且这种控制具有右侧优势.  相似文献   
9.
《Journal of Physiology》2013,107(3):178-192
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号