首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   23篇
  国内免费   1篇
  2023年   6篇
  2022年   2篇
  2021年   15篇
  2020年   9篇
  2019年   5篇
  2018年   7篇
  2017年   11篇
  2016年   2篇
  2015年   7篇
  2014年   11篇
  2013年   14篇
  2012年   14篇
  2011年   10篇
  2010年   8篇
  2009年   9篇
  2008年   9篇
  2007年   12篇
  2006年   14篇
  2005年   19篇
  2004年   19篇
  2003年   11篇
  2002年   10篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1973年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
Amyloid fibrillar aggregates isolated from the brains of patients with neurodegenerative diseases invariably have post‐translational modifications (PTMs). The roles that PTMs play in modulating the structures and polymorphism of amyloid aggregates, and hence their ability to catalyze the conversion of monomeric protein to their fibrillar structure is, however, poorly understood. This is particularly true in the case of tau aggregates, where specific folds of fibrillar tau have been implicated in specific tauopathies. Several PTMs, including acetylation at Lys 280, increase aggregation of tau in the brain, and increase neurodegeneration. In this study, tau‐K18 K280Q, in which the Lys 280 → Gln mutation is used to mimic acetylation at Lys 280, is shown, using HX‐MS measurements, to form fibrils with a structural core that is longer than that of tau‐K18 fibrils. Measurements of critical concentrations show that the binding affinity of monomeric tau‐K18 for its fibrillar counterpart is only marginally more than that of monomeric tau‐K18 K280Q for its fibrillar counterpart. Quantitative analysis of the kinetics of seeded aggregation, using a simple Michaelis–Menten‐like model, in which the monomer first binds and then undergoes conformational conversion to β‐strand, shows that the fibrils of tau‐K18 K280Q convert monomeric protein more slowly than do fibrils of tau‐K18. In contrast, monomeric tau‐K18 K280Q is converted faster to fibrils than is monomeric tau‐K18. Thus, the effect of Lys 280 acetylation on tau aggregate propagation in brain cells is expected to depend on the amount of acetylated tau present, and on whether the propagating seed is acetylated at Lys 280 or not.  相似文献   
3.
Summary The localization and orientation of cytoskeletal elements in developing cotton fibres were studied by the indirect immunofluorescence and the dry cleaving technique. Microtubules are transversely arranged to the cell axis, most probably in a flat helix, in the cortex of expanding fibres. Since the innermost deposited cellulose microfibrils always show primarily the same orientation it is postulated that the microtubules control the transverse deposition of the cellulose fibrils. Little further cell expansion takes place during secondary wall formation and the microfibril pattern corresponds to that of the cortical microtubules,e.g., in the steepness of their helicoidal turns. Microtubules with a length of 7–20 m were observed, probably they are longer. The importance of microtubule length on microfibril deposition is discussed. The density of microtubule packing is in the range of 8–14 m-1 as in other comparable cell types. In contrast to the microtubules, actin filaments are most likely longitudinally oriented during different phases of fibre development. The dry cleaving technique reveals numerous coated pits in the plasma membrane which are not crossed by microtubules. They seem to be linked to the latter by filamentous structures.  相似文献   
4.
金黄滴虫细胞核微丝系统的初步观察   总被引:2,自引:0,他引:2  
金黄滴虫细胞核内经常存在着许多直径约为7nm的微丝。这些徽丝大多组合成走向不定的徽丝束,微丝束交织而成遍布核内的网架。核被下面微丝束较多,它们的存在常使核被外凸而成隆脊。核内微丝与核内结构如核仁、染色质等似乎都是相连的。有些微丝横跨核被,一端位于核内,另一端位于核周腔中,并靠近叶绿体。核周腔和内质网腔中也存在着微丝和另一种纤维,印管状纤维。用细胞松弛素B处理后,细胞核、核周腔和内质网腔中的微丝均消失,细胞核的形态也发生变化,似乎微丝网架有支持细胞核的作用。核内微丝可能是在内质网中组装,然后经核周腔进入核内的。  相似文献   
5.
Polymer chains of (13)--d-glucan were dissolved with 1 M NaOH at 4° C from native microfibrillar protoplast nets. The chains associated into microfibrils during NaOH neutralization or dialysis. In contrast to the native microfibrils which are of uniform width individually (10 to 20 nm) and arranged in flat bundles, the microfibrils formed in vitro showed no band formation and consisted of fibrous spindle-shaped subunits of variable width or loose elementary fibrils about 1.7 nm wide. X-ray diagrams of native nets indicated a fairly high crystallinity and were different for wet and dry specimens. They corresponded to those of paramylon. Precipitated glucans produced diagrams different from the former and revealing a lower crystallinity especially with the dry samples.The X-ray pattern, combined with other data, allowed the precipitated microfibrils to be identified as aggregates of molecular strands composed each of three intertwined helical glucan chains. Since these triple helical chains are about 1.7 nm wide the elementary fibrils of this width can represent only single triple-helical strands. These helices have 7 glucose residues per turn and therefore a low symmetry which explains the poor crystallizing properties. The 7 membered helix represents a basic difference with the well crystallized native glucan which is built of highly symmetrical triple helices with 6 glucose residues per turn. Since 61 helical conformation is not formed in vitro at normal temperatures its generation in vivo must be due to the action of synthesizing enzymes at the protoplast membrane. The intertwining of these helices and crystallization of the strands are determined by their symmetry and physical properties of the chains. This characterizes the native microfibrils as products of self-assembly of enzymegenerated 61 helices.  相似文献   
6.
M. Ishigami  R. Nagai  K. Kuroda 《Protoplasma》1981,109(1-2):91-102
Summary The birefringent fibrils in thin-spread plasmodium ofPhysarum polycephalum have been investigated with both polarizing and electron microscopes. The birefringent fibrils were classified into three groups by polarized light microscopy. The first type of fibril is observed in the advancing frontal region as a mutual orthogonal array. The birefringence changes rhythmically in accordance with the shuttle streaming. The second type of birefringent fibril is located in the strand region and runs parallel or somewhat oblique to the strand axis. The third type is observed in the strand region always perpendicular to the streaming axis. Electron microscopy confirmed that all these fibrils are composed of microfilaments, which range in densities in the cross view of the fibril from 1.2 to 1.7 × 103/m2 (1.5 × 103/(xm2 on the average).  相似文献   
7.
E. Kamitsubo 《Protoplasma》1981,109(1-2):3-12
Summary The effect of supraoptimal temperatures onNitella cells was studied with special reference to the function of subcortical fibrils and an endoplasmic factor. Local heat-treatment (50 °C for 1 minute) of an internodal cell ofNitella disclosed that 1. the subcortical fibrils in the treated area remain normal, not affected by the treatment, 2. the subcortical fibrils alone produce no cytoplasmic streaming, 3. the endoplasm contains an extremely heat-labile factor which is indispensable for streaming, and 4. the stagnant endoplasm in the heat-treated area is neither coagulated nor gelated by heat.Preliminary reports appeared in Proc. 37th Annu. Meet. Bot. Soc. Jpn. P. 160 (1972, in Japanese) and in Abst. Annu. Meet. Jpn. Soc. Cell Biol. p. 57 (1975, in Japanese).  相似文献   
8.
Fibronectin and collagens are major constituents of the cell matrix of fibroblasts. Fibronectin is a 220,000 dalton glycoprotein that mediates a variety of adhesive functions of cells examined in vitro. Fibronectin is secreted in a soluble form and interacts with collagen to form extracellular filaments. Fibronectin and procollage type I were localized using the peroxidase anti-peroxidase method. Under standard culture conditions, fibronectin and procollagen were localized to non-periodic 10 nm extracellular fibrils, the cell membrane and plasma membrane vesicles. Ascorbate treatment of cells leads to a new larger fibril with a diameter of approximately 40 nm. Antibodies to fibronectin and procollagen I react to these native collagen fibrils with an axial periodicity of approximately 70 nm. Fibronectin is clearly associated with native collagen fibrils produced by ascorbate treated cells and there is an asymetric distribution or segregation of fibronectin on these collagen fibrils with a 70 nm axial repeat.  相似文献   
9.
The cytoplasmic fibrils of Treponema refringens were studied in situ by electron microscopy of thin sectioned and negatively stained cells. From 5 to 21 parallel fibrils ran through the cell in a band adjacent to the inner side of the cytoplasmic membrane, on the inner sides of the curves of the spirochete. The nuclear areas of cells were adjacent to the fibrils. Cross sections of fibrils isolated from cells which had been lysed were polygonal and not uniformly electron dense. Polyacrylamide gel electrophoresis of partially purified fibril preparations indicated their main component to be a protein with a molecular weight of 97,000. Fibrils were solubilized by 1% trypsin, 1% pronase, 6 M urea, 1 N HCl, 0.005 N NaOH or 1.3% sodium dodecyl sulfate. By electron microscopy of negatively stained isolated fibrils, each fibril was found to be a complex arrangement of strands rather than a single tubule.Abbreviations CM Cytoplasmic membrane - PTA Phosphotungstic acid - UOx Uranyl oxalate - SDS sodium dodecyl sulfate This communication is Journal Acticle No. 7644 from the Michigan Agricultural Experiment Station  相似文献   
10.
Self‐assembly of natural or designed peptides into fibrillar structures based on β‐sheet conformation is a ubiquitous and important phenomenon. Recently, organic solvents have been reported to play inductive roles in the process of conformational change and fibrillization of some proteins and peptides. In this study, we report the change of secondary structure and self‐assembling behavior of the surfactant‐like peptide A6K at different ethanol concentrations in water. Circular dichroism indicated that ethanol could induce a gradual conformational change of A6K from unordered secondary structure to β‐sheet depending upon the ethanol concentration. Dynamic light scattering and atomic force microscopy revealed that with an increase of ethanol concentration the nanostructure formed by A6K was transformed from nanosphere/string‐of‐beads to long and smooth fibrils. Furthermore, Congo red staining/binding and thioflavin‐T binding experiments showed that with increased ethanol concentration, the fibrils formed by A6K exhibited stronger amyloid fibril features. These results reveal the ability of ethanol to promote β‐sheet conformation and fibrillization of the surfactant‐like peptide, a fact that may be useful for both designing self‐assembling peptide nanomaterials and clarifying the molecular mechanism behind the formation of amyloid fibrils. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号