首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4138篇
  免费   334篇
  国内免费   294篇
  2024年   10篇
  2023年   84篇
  2022年   89篇
  2021年   134篇
  2020年   134篇
  2019年   180篇
  2018年   165篇
  2017年   141篇
  2016年   145篇
  2015年   152篇
  2014年   288篇
  2013年   285篇
  2012年   217篇
  2011年   230篇
  2010年   188篇
  2009年   207篇
  2008年   194篇
  2007年   226篇
  2006年   192篇
  2005年   194篇
  2004年   148篇
  2003年   99篇
  2002年   101篇
  2001年   73篇
  2000年   65篇
  1999年   65篇
  1998年   59篇
  1997年   44篇
  1996年   37篇
  1995年   40篇
  1994年   48篇
  1993年   48篇
  1992年   38篇
  1991年   51篇
  1990年   31篇
  1989年   32篇
  1988年   21篇
  1987年   19篇
  1986年   20篇
  1985年   37篇
  1984年   40篇
  1983年   15篇
  1982年   24篇
  1981年   26篇
  1980年   21篇
  1979年   35篇
  1978年   31篇
  1977年   11篇
  1976年   16篇
  1973年   5篇
排序方式: 共有4766条查询结果,搜索用时 15 毫秒
1.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
2.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
3.
Infections of one and two Hymenolepis diminuta established in newly weaned rats continued to grow for the duration of the experiment (238 days), whereas infections of 5 worms per rat became asymptotic around Day 55 postinfection and remained at or below this level thereafter as shown by biomass and mean weight per worm measurements. Infections of 50 worms established in newly weaned rats became asymptotic around Day 28 postinfection and thereafter worms were lost from the rats. Initially the biomass fell with the loss of worms, but by Day 56 a new lower biomass persisted for the remainder of the infection period. This level was maintained, despite diminishing numbers of worms, due to the growth of surviving individuals to a weight exceeding the original weight at maturity by a factor of more than 2. Experiments using rats that were mature at the time of infection demonstrated that the same response occurred, but approximately 3 weeks earlier.  相似文献   
4.
《Cell reports》2020,30(3):807-819.e4
  1. Download : Download high-res image (268KB)
  2. Download : Download full-size image
  相似文献   
5.
Species loss leads to community closure   总被引:1,自引:0,他引:1  
Global extinction of a species is sadly irreversible. At a local scale, however, extinctions may be followed by re-invasion. We here show that this is not necessarily the case and that an ecological community may close its doors for re-invasion of species lost from it. Previous studies of how communities are assembled have shown that there may be rules for that process and that limitations are set to the order by which species are introduced and put together. Instead of focusing on the assembly process we randomly generated simple competitive model communities that were stable and allowed for two to 10 coexisting species. When a randomly selected single species was removed from the community, the cascading species loss was recorded and frequently the resulting community was more than halved. Cascading extinctions have previously been recorded, but we here show that the relative magnitude of the cascade is dependent on community size (and not only trophic structure) and that the reintroduction of the original species lost often is impossible. Hence, species loss does not simply leave a void potentially refilled, but permanently alters the entire community structure and consequently the adaptive landscape for potential re-invaders.  相似文献   
6.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
7.
8.
The tumour growth inhibitor L-2-amino-4-methoxy-trans-3-butenoic acid (Ro07-7957) inhibits serine hydroxymethyltransferase in cytosolic extracts of Walker carcinoma non-competitively with respect to L-serine with an apparent inhibition constant similar to the Km-value for L-serine. The kinetics of inactivation suggest that it reacts as an irreversible substrate analogue. Incubation of Walker cells with Ro07-7957 causes an increase in serine hydroxymethyltransferase activity which is most pronounced at concentration ≤LD50. This increase in enzyme activity does not occur in the presence of cycloheximide. These results suggest that inhibition of serine hydroxymethyltransferase in intact cells is accompanied by an increase in enzyme biosynthesis and that the growth inhibitory property of Ro07-7957 does not involve interference with the conversion of serine to glycine.  相似文献   
9.
H Slor 《Mutation research》1973,19(2):231-235
The carcinogen 7-bromomethylbenz(a)anthracene (BBA), which can bind strongly to DNA, induces unscheduled DNA synthesis (DNA repair) in normal lymphocytes but almost none in lymphocytes from patients with Xeroderma pigmentosum (XP), and inherited disease known to be defective in excision repair of ultraviolet-damaged DNA. We studied [3H]BBA's ability to bind to DNA of normal and XP lymphocytes, its influence on unscheduled DNA synthesis, and its removal from the DNA of both cell types. We found that 20–30% of the BBA is bound to macromolecules other than DNA and that its binding to DNA is essentially complete after 30 min. The induction of unscheduled DNA synthesis by the carcinogen in XP lymphocytes was approximately 10% of that induced in normal lymphocytes. While 15–20% of the BBA was removed from the DNA of normal cells 6 h after treatment, only 1–2% was removed from the DNA of XP cells. Thus, XP cells not only are defective in repairing ultraviolet-damaged DNA and excising thymine dimers but also fail to repair DNA damaged by certain carcinogens, and, most importantly, fail to remove the DNA-bound carcinogen, BBA.  相似文献   
10.
The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号