首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2002年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
One of the common explanations for oxidative stress in the physiological milieu is based on the Fenton reaction, i.e. the assumption that radical chain reactions are initiated by metal-catalyzed electron transfer to hydrogen peroxide yielding hydroxyl radicals. On the other hand — especially in the context of so-called “iron switches” — it is postulated that cellular signaling pathways originate from the interaction of reduced iron with hydrogen peroxide.

Using fluorescence detection and EPR for identification of radical intermediates, we determined the rate of iron complexation by physiological buffer together with the reaction rate of concomitant hydroxylations of aromatic compounds under aerobic and anaerobic conditions. With the obtained overall reaction rate of 1,700 M-1s-1 for the buffer-dependent reactions and the known rates for Fenton reactions, we derive estimates for the relative reaction probabilities of both processes.

As a consequence we suggest that under in vivo conditions initiation of chain reactions by hydroxyl radicals generated by the Fenton reaction is of minor importance and hence metal-dependent oxidative stress must be rather independent of the so-called “peroxide tone”. Furthermore, it is proposed that — in the low (subtoxic) concentration range — hydroxylated compounds derived from reactions of “non-free” (crypto) OH radicals are better candidates for iron-dependent sensing of redox-states and for explaining the origin of cellular signals than the generation of “free” hydroxyl radicals.  相似文献   
2.
We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4 ms) than with the bovine oxidase (~ 1 ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR → F and F → O reactions were slowed by factors of ~ 3 and ~ 10, respectively, and electron transfer from CuA to heme a during the PR → F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   
3.
The catalase from Proteus mirabilis peroxide-resistant bacteria is one of the most efficient heme-containing catalases. It forms a relatively stable compound II. We were able to prepare samples of compound II from P. mirabilis catalase enriched in 57Fe and to study them by spectroscopic methods. Two different forms of compound II, namely, low-pH compound II (LpH II) and high-pH compound II (HpH II), have been characterized by Mössbauer, extended X-ray absorption fine structure (EXAFS) and UV-vis absorption spectroscopies. The proportions of the two forms are pH-dependent and the pH conversion between HpH II and LpH II is irreversible. Considering (1) the Mössbauer parameters evaluated for four related models by density functional theory methods, (2) the existence of two different Fe–Oferryl bond lengths (1.80 and 1.66 Å) compatible with our EXAFS data and (3) the pH dependence of the α band to β band intensity ratio in the absorption spectra, we attribute the LpH II compound to a protonated ferryl FeIV–OH complex (Fe–O approximately 1.80 Å), whereas the HpH II compound corresponds to the classic ferryl FeIV=O complex (Fe=O approximately 1.66 Å). The large quadrupole splitting value of LpH II (measured 2.29 mm s?1 vs. computed 2.15 mm s?1) compared with that of HpH II (measured 1.47 mm s?1 vs. computed 1.46 mm s?1) reflects the protonation of the ferryl group. The relevancy and involvement of such (FeIV=O/FeIV–OH) species in the reactivity of catalase, peroxidase and chloroperoxidase are discussed.  相似文献   
4.
The iron (IV), (V) and (VI) oxidation states are of great interest because of their role in catalytic oxidation/ hydroxylation reactions. This report summarizes the information currently available on the kinetic and chemical properties of the water-soluble ions of FeO24-, FeO3-4 and FeO4-4, their prorogated forms. and/or simple complex derivatives. The discussion includes their radiation-induced formation, decay kinetics, reactivity with other compounds, determination of their respective pKa, values as well as spectral properties.  相似文献   
5.
Heme‐containing catalases and catalase‐peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase‐peroxidase led us to investigate the enzyme for comparison with other catalase‐peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s?1). In addition, the enzyme supported a much slower (kcat = 20 s?1) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2‐chlorophenol were identified in crystal structures at 1.65–1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low‐spin conversion of the FeIII high‐spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. Proteins 2015; 83:853–866. © 2015 Wiley Periodicals, Inc.  相似文献   
6.
During infection, Mycobacterium leprae is faced with the host macrophagic environment limiting the growth of the bacilli. However, (pseudo-)enzymatic detoxification systems, including truncated hemoglobin O (Ml-trHbO), could allow this mycobacterium to persist in vivo. Here, kinetics of peroxynitrite (ONOOH/ONOO) detoxification by ferryl Ml-trHbO (Ml-trHbOFe(IV)O), obtained by treatment with H2O2, is reported. Values of the second-order rate constant for peroxynitrite detoxification by Ml-trHbOFe(IV)O (i.e., of Ml-trHbOFe(III) formation; kon), at pH 7.2 and 22.0 °C, are 1.5 × 104 M−1 s−1, and 2.2 × 104 M−1 s−1, in the absence of and presence of physiological levels of CO2 (∼1.2 × 10−3 M), respectively. Values of kon increase on decreasing pH with a pKa value of 6.7, this suggests that ONOOH reacts preferentially with Ml-trHbOFe(IV)O. In turn, peroxynitrite acts as an antioxidant of Ml-trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. As a whole, Ml-trHbO can undertake within the same cycle H2O2 and peroxynitrite detoxification.  相似文献   
7.
《Free radical research》2013,47(4):269-280
The method of Electron Paramagnetic Resonance (EPR) spectroscopy was used to study the reaction of human methaemoglabin (metHb) with hydrogen peroxide. The samples for EPR measurements were rapidly frozen in liquid nitrogen at different times after H2O2 was added at 3- and 10-fold molar excess to 100 μM metHb in 50 mM phosphate buffer, pH 7.4, 37°C. Precautions were taken to remove all catalase from the haemoglobin preparation and no molecular oxygen evolution was detected during the reaction. On addition of H2O2 the EPR signals (- 196°C) of both high spin and low spin metHb rapidly decreased and free radicals were formed. The low temperature (- 196°C) EPR spectrum of the free radicals formed in the reaction has been deconvoluted into two individual EPR signals, one being an anisotropic signal (g° = 2.035 and g° = 2.0053), and the other an isotropic singlet (g = 2.0042, AH = 20 G). The former signal was assigned to peroxyl radicals. As the kinetic Pehaviour of both peroxyl (ROO*) and nonperoxyl (P*) free radicals were similar, we concluded that ROO* radicals are not formed from P* radicals by addition of O2. The time courses for both radicals showed a steady state during the time required for H2O2 to decompose. Once all peroxide was consumed, the radical decayed with a first order rate constant of 1.42 ± 10-3 s-1 (1:3 molar ratio). The level of the steady state was higher and its duration shorter at lower initial concentration of H2O2. The formation of the rhombic Fe(III) non-haemcentres with g = 4.35 was found. Their yield was proportional to the H2O2 concentration used and the centers were ascribed to haem degradation products. The reaction was also monitored by EPR spectroscopy at room temperature. The kinetics of the free radicals measured in the reaction mixture at room temperature was similar to that observed when the fast freezing method and EPR measurement at —196°C were used.  相似文献   
8.
《Free radical research》2013,47(1):469-477
The iron (IV), (V) and (VI) oxidation states are of great interest because of their role in catalytic oxidation/ hydroxylation reactions. This report summarizes the information currently available on the kinetic and chemical properties of the water-soluble ions of FeO24-, FeO3–4 and FeO4–4, their prorogated forms. and/or simple complex derivatives. The discussion includes their radiation-induced formation, decay kinetics, reactivity with other compounds, determination of their respective pKa, values as well as spectral properties.  相似文献   
9.
Mammalian tissues have large amounts of available ATP which are generated by oxidative phosphorylation in mitochondria. For the maintenance of the human body, a large amount of oxygen is required to regenerate these ATP molecules. A small fraction of the inspired oxygen is converted to superoxide radical and related metabolites even under physiological conditions. Most reactive oxygen species react rapidly with a variety of molecules thereby interfering with cellular functions and induce various diseases.

Nitric oxide (NO) is an unstable gaseous radical with high affinity for various molecules, such as hemeproteins, thiols, and related radicals. NO easily penetrates through cell membrane/lipid bilayers, forms dissociable complexes with these molecules and modulates cellular metabolism and functions. Because NO has an extremely high affinity for the superoxide radical, the occurrence of the latter might decrease the biological function of NO. Thus, superoxide radicals in and around vascular endothelial cells play critical roles in the pathogenesis of hypertension and vasogenic tissue injury. Because NO also reacts with molecular oxygen, it rapidly loses its biological activity, particularly under ambient atmospheric conditions where the oxygen tension is unphysiologically high. Thus, biological functions of NO are determined by the local concentrations of molecular oxygen and superoxide radicals.

NO also inhibits electron transfer reaction and ATP synthesis in mitochondria and aerobic bacteria, such as E. coli; the inhibitory effects are also enhanced by hypoxia. Thus, the cross-talk between NO, molecular oxygen and oxyradicals play critical roles in the regulation of energy metabolism, fates and the survival of aerobic organisms. The present work describes the pathophysiological significance of the supersystem driven by the cross-talk between NO and oxyradicals.  相似文献   
10.
The photosensitizer flavin mononucleotide (FMN), in conjunction with the reducing agents diethylenetria-minepentaacetic acid (DTPA), hydrazine and hydroxylamines derived from nitroxides, generates superoxide radicals in a strictly light-dependent reaction in aerobic solution. Addition of superoxide dismutase (SOD) converts this system to a hydrogen peroxide generator. In the presence of horseradish peroxidase the latter system becomes a phenoxyl radical generator with appropriate phenolic substrates. Under anaerobic conditions FMN, hydrogen peroxide and an iron chelate generate ferryl and when this system is combined with dimethylsulfoxide, methyl radicals are produced. All the radicals can be generated with little contamination from other radicals, in high yields and the reaction can be terminated immediately upon cessation of illumination. Useful applications of this photochemical system include ESR studies of transient free radical species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号