首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   15篇
  国内免费   1篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2004年   4篇
  2003年   8篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1997年   7篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1985年   2篇
  1984年   1篇
  1980年   2篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
1.
Geert van Wirdum 《Hydrobiologia》1993,265(1-3):129-153
A survey of base-rich wetlands in The Netherlands is presented. The main area of their occurrence is the low-lying Holocene part of the country, until some thousand years ago a large and coherent wetland landscape: the Holland wetland. The development of various parts of the Holland wetland into marshes, fens and bogs can be understood from hydrological relations in mire basins, as recognized in the distinction of primary, secondary and tertiary mire basin stages. Presently, the remnants of the Holland wetland are separate base-rich wetlands. The succession of their vegetation reflects various abiotic conditions and human influences. Three main developmental periods are distinguished as regards these factors. The first, geological period of mire development is seen as a post-glacial relaxation, with the inertia due to the considerable mass of wetland as a stabilizing factor. Biological “grazing” influences, as an aspect of utilization by humans, converted base-rich wetlands to whole new types in the second, historical period. Presently, mass and harvesting have decreased in importance, and actual successions in terrestrializing turbaries seem to reflect rapidly changing environmental conditions. Human control could well become the most important factor in the future development of wetland nature. The present value of open fen vegetation strongly depends on the continuation of the historical harvesting. The development of wooded fen may help to increase the mass of wetland in the future. Best results in terms of biodiversity are expected when their base state is maintained through water management. The vegetation and hydrology of floating fens in terrestrializing turbaries is treated in some more detail. Various lines and phases in the succession are distinguished. Open fen vegetation at base-rich, yet nutrient-poor sites is very rich in species threatened elsewhere. The fast acidification of certain such fens is attributed to hydrological and management factors. This acidification is illustrated in the profile of a floating raft sample. At the scale of these small fens, the elemental structure comprising base-rich fen, transitional fen and bog vegetation, is not as stable as it was in the large Holland wetland. A critical role seems to be played by the supply of bases with the water influx. The changing base state is supposed to change the nutrient cycling to such an extent that it would be correct to call this trophic excitation of the ecosystem, rather than just eutrophication. Eutrophication indicates a quantitative reaction to an increased nutrient supply, the internal system being unaltered. The drainage of fens, resulting in an increased productivity of the vegetation, provides another example of excitation, to the effect that the functional system is dramatically changed internally.  相似文献   
2.
Drainage and agricultural use transform natural peatlands from a net carbon (C) sink to a net C source. Rewetting of peatlands, despite of high methane (CH4) emissions, holds the potential to mitigate climate change by greatly reducing CO2 emissions. However, the time span for this transition is unknown because most studies are limited to a few years. Especially, nonpermanent open water areas often created after rewetting, are highly productive. Here, we present 14 consecutive years of CH4 flux measurements following rewetting of a formerly long-term drained peatland in the Peene valley. Measurements were made at two rewetted sites (non-inundated vs. inundated) using manual chambers. During the study period, significant differences in measured CH4 emissions occurred. In general, these differences overlapped with stages of ecosystem transition from a cultivated grassland to a polytrophic lake dominated by emergent helophytes, but could also be additionally explained by other variables. This transition started with a rapid vegetation shift from dying cultivated grasses to open water floating and submerged hydrophytes and significantly increased CH4 emissions. Since 2008, helophytes have gradually spread from the shoreline into the open water area, especially in drier years. This process was periodically delayed by exceptional inundation and eventually resulted in the inundated site being covered by emergent helophytes. While the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after cattail and other emergent helophytes became dominant at the inundated site. Therefore, CH4 emissions declined only after 10 years of transition following rewetting, potentially reaching a new steady state. Overall, this study highlights the importance of an integrative approach to understand the shallow lakes CH4 biogeochemistry, encompassing the entire area with its mosaic of different vegetation forms. This should be ideally done through a study design including proper measurement site allocation as well as long-term measurements.  相似文献   
3.
4.
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process‐based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS‐TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water‐table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.  相似文献   
5.
Abstract The large accumulation of organic matter in peatlands is primarily caused by slow rates of litter decomposition. We determined rates of decomposition of major peat-forming litters of vascular plants and mosses at five sites: a poor fen in New Hampshire and a bog hummock, a poor fen, a beaver pond margin and a beaver pond in Ontario. We used the litterbag technique, retrieving triplicate litterbags six or seven times over 3–5 years, and found that simple exponential decay and continuous-quality non-linear regression models could adequately characterize the decomposition in most cases. Within each site, the rate of decomposition at the surface was generally Typha latifolia leaves = Chamaedaphne calyculata leaves = Carex leaves > Chamaedaphne calyculata stems > hummock Sphagnum = lawn/hollow Sphagnum, with exponential decay constant (k) values generally ranging from 0.05 to 0.37 and continuous-quality model initial quality (q 0 ) values ranging from 1.0 (arbitrarily set for Typha leaves) to 0.7 (Sphagnum). In general, surface decay rates were slowest at the bog hummock site, which had the lowest water table, and in the beaver pond, which was inundated, and fastest at the fens. The continuous-quality model site decomposition parameter (u 0 ) ranged from 0.80 to 0.17. Analysis of original litter samples for carbon, nitrogen and proximate fractions revealed a relatively poor explanation of decomposition rates, as defined by k and q 0 , compared to most well-drained ecosystems. Three litters, roots of sedge and a shrub and Typha leaves, were placed at depths of 10, 30 and 60 cm at the sites. Decomposition rates decreased with depth at each site, with k means of 0.15, 0.08 and 0.05 y−1 at 10, 30 and 60 cm, respectively, and u 0 of 0.25, 0.13 and 0.07. These differences are primarily related to the position of the water table at each site and to a lesser extent the cooler temperatures in the lower layers of the peat. The distinction between bog and fen was less important than the position of the water table. These results show that we can characterize decomposition rates of surface litter in northern peatlands, but given the large primary productivity below-ground in these ecosystems, and the differential rates of decomposition with depth, subsurface input and decomposition of organic matter is an important and relatively uncertain attribute.  相似文献   
6.
The aim of the study was to assess the effects of fen rewetting on carabid beetle and vascular plant assemblages within riverine fens along the river Peene in north‐eastern Germany. Drained (silage grassland), rewetted (restored formerly drained silage grassland), and near‐natural (fairly pristine) stands were compared. Eighty‐four beetle species (7,267 individuals) and 135 plant species were recorded. The richness of vascular plant species and the number of endangered species were highest on near‐natural fens. Fourteen years of rewetting did not increase plant species numbers compared with drained fens. For carabid beetles, however, species richness and the number of stenotopic species were highest on rewetted fens. Rewetting caused the replacement of generalist carabids by wetland specialists, but did not provide suitable habitat for specialist fen carabids or for plant species of oligo‐ or mesotrophic fen communities. Therefore, raising the water table on fens with nutrient‐rich, degraded peat was not sufficient for restoring species assemblages of intact fens, although water level was the most important environmental factor separating species assemblages. Our study illustrated that insects and plants may respond differentially to restoration, stressing the need to consider different taxa when assessing the efficiency of fen restoration. Furthermore, species assemblages of intact fens could not be restored within 14 years, highlighting the importance of conserving pristine habitat.  相似文献   
7.
Recent literature on peatland restorationindicates as a general goal repairing orrebuilding ecosystems by restoringecosystem structure, trophic organization,biodiversity, and functions to thosecharacteristic of the type of peatland towhich the damaged ecosystem belonged, or atleast to an earlier successional stage.Attainment requires provision of anappropriate hydrological regime,manipulating surface topography, improvingmicroclimate, adding appropriate diaspores,manipulating base status where necessary,fertilizing in some cases, excludinginappropriate invaders, adaptively managingthrough at least one flood/drought cycle toensure sustainability, and monitoring on ascale of decades. Several matchingconditions favoring or opposing restorationare suggested.In the restoration of peatlands, successeshave generally been those of short-termrepair. Periods of restoration have beenmuch too short to ensure progression to, oreven well toward, a fully functionalpeatland reasonably compatible with thepristine state of similar peatlandselsewhere, although with altered surfacepatterns.Long-term monitoring ofpeatland-restoration projects is essentialfor a better understanding of how to carryout such restoration successfully.Paleoecology is suggested as anunderutilized tool in peatlandrestoration.  相似文献   
8.
9.

Questions

Our study evaluated how species composition and plant traits that indicate functioning condition in fens responded to grazing cessation over time in an arid ecosystem of the western US. The specific questions addressed were: (i) how does livestock exclusion influence species composition in fens; (ii) is grazing cessation associated with shifts in species functional traits that indicate fen condition; and (iii) what is the pattern of response to livestock exclusion over time?

Location

Plumas National Forest, California, US.

Methods

We studied paired fenced and unfenced study sites in two fens to examine the effects of livestock exclusion. Parallel transects were established at each site, and plant species and ground cover were repeatedly surveyed, once prior to and multiple times following treatment, using 0.01 m2 frequency frames. We used NMDS to analyse species composition, RLQ and fourth‐corner analysis to evaluate species functional traits and environmental variables, and linear mixed effects models to examine differences in responses between fenced and unfenced study sites over time.

Results

After fencing, we observed unexpected shifts in species composition and plant functional traits. Grazed sites were associated with peat‐forming obligate wetland, moss and sedge species, while fenced sites were characterized by non‐peat‐forming facultative upland, and upland forb, grass and early seral species. Species composition also varied between sites and sample years.

Conclusions

We found that livestock exclusion strongly affects plant species composition in fens, including promoting species with functional traits that indicate a loss of functioning condition, such as ruderal and upland species. Possible explanations for these observed shifts include: (1) biomass accumulation in the absence of herbivory, (2) competitive exclusion in fenced sites, (3) succession, (4) the abiotic conditions of our study sites, particularly hydrology and nutrient status, and (5) interactions among these factors. We conclude that degradation of fen wetlands caused by livestock grazing in the arid western US may not be reversed by excluding livestock alone.  相似文献   
10.
The effect of clipping on methane emissions from Carex   总被引:2,自引:0,他引:2  
The purpose of this study was to estimate theresistance to methane release of the above-groundportion of Carex, a wetland sedge, and todetermine the locus of methane release from the plant. Measurements conducted on plants clipped to differentheights above the water level revealed that themethane flux from clipped plants was on the order of97% to 111% of control (unclipped) values. Thegreatest increase was observed in the initial fluxmeasurement after the plants had been clipped to aheight of 10 cm. Subsequent measurements on the 10 cmhigh stubble were similar to control values. When theends of plants which had been clipped to 10 cm weresealed, the methane flux was reduced to 65% ofcontrol values. However, sealing had no effect on theflux from plants which were clipped at 15 cm andhigher, indicating that virtually all methane wasreleased on the lower 15 cm of the plants as theyemerged from the water. The results indicate that theabove-ground portions of Carex at our studysite offered only slight resistance to the passage ofmethane, and that the main sites limiting methaneemission are below-ground, at either theporewater-root or root-shoot boundary. We hypothesizethat the transitory increase in flux associated withclipping was due to the episodic release of methaneheld within the plant lacunae. The buildup ofCH4 partial pressure within lacunal spacesovercomes the resistance to gas transport offered byaboveground parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号