首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   6篇
  国内免费   2篇
  2023年   2篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1986年   3篇
  1983年   1篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
To determine its accurate taxonomic position, a tidal pool bloom-forming dinoflagellate, Scrippsiella hexapraecingula was re-investigated using light, scanning and transmission electron microscopy together with a phylogenetic analysis based on concatenated ribosomal DNA sequences. The culture strains used in this study were established from intertidal rock pool samples taken from Jogashima, Kanagawa prefecture and Heisaura, Chiba prefecture, Japan and were identified as S. hexapraecingula originally described by Horiguchi and Chihara from a tidal pool in Hachijo Island, Tokyo, Japan in 1983. The thecal plate arrangement was determined as Po, X, 4′, 3a, 6″, 6c, 5s, 5″′, 2″″. The internal structure was investigated for the first time. The organism has typical dinoflagellate cellular organelles such as a dinokaryotic nucleus, mitochondria with tubular cristae, trichocysts and pusule. The chloroplast was single and connected to the central pyrenoid (stalked type). The eyespot found in the sulcus is of the B type with two rows of superficial intraplastidal lipid globules directly overlain by an extraplastidal single layer of crystalline bricks enveloped by a common membrane. The apical pore is plugged by a double-layered stub-like structure. Stalk building material for attachment covered the apical pore. Phylogenetic analysis indicated that S. hexapraecingula was most closely related to a freshwater dinoflagellate, Peridiniopsis borgei, the type species of the genus Peridiniopsis. However, clear differences exist between these two organisms, including their thecal plate arrangement, habitat and habit. As a result, a new genus, Chiharadinium Dawut & T. Horiguchi gen. nov. has been proposed rather than attempting to accommodate S. hexapraecingula in the genus Peridiniopsis. The new combination, Chiharadinium hexapraecingulum (T. Horiguchi & Chihara) Dawut & T. Horiguchi comb. nov. has been proposed.  相似文献   
2.
Flagellar and basal body development during cell division was studied in the biflagellate green alga Spermatozopsis similis Preisig et Melkonian by light microscopy of immobilized living cells, statistical analysis of flagellar lengths during the cell cycle, and electron microscopy of cells and isolated cytoskeletons. Interphase cells display two flagella of unequal/subequal length. An eyespot located in an anterior lobe of the chloroplast is connected to the basal body bearing the shorter flagellum by means of a five-stranded microtubular root. Until cell division, the two parental flagella attain the same length. During cell division, each cell forms two new flagella that grow to a length of 1.5 μm before they are distributed in a semiconservative fashion together with the parental flagella to the two progeny cells at cytokinesis. During the following interphase, the flagella newly formed during the preceding cell division grow to attain the same length as the parental flagella until the subsequent cell division. The shorter of the two flagella of a cell thus represents the developmentally younger flagellum, which transforms to the mature state during two consecutive cell cycles. Interphase cells display only two flagella-bearing basal bodies; two nascent basal bodies are formed during cell division and are connected to the microtubular d-roots of respective parental basal bodies with which the newly formed basal bodies are later distributed to the progeny cells. During segregation, basal body pairs shaft into the 11/5 o'clock direction, thus conserving the 1/7 o'clock configuration of basal body pairs of interphase cells. Prior to chloroplast and cell division, an eyespot is newly formed near the cell posterior in close association with a 1s microtubular root, while the parental eyespot is retained. During basal body segregation, eyespot-root connections for both the old and newly formed eyespots are presumably lost, and new associations of the eyespots with the 2s roots of the newly formed basal bodies are established during cytokinesis. The significance of this “eyespot-flagellar root developmental cycle” for the absolute orientation of the progeny cells is discussed.  相似文献   
3.
Eyespot was assessed and grain yields determined in the eighth and ninth years (1992 and 1993) of a field experiment in which the fungicides carbendazim and prochloraz were applied, separately or in mixtures, to plots of successive crops of winter wheat. Populations of the eyespot fungus, Pseudocercosporella herpotrichoides, were characterised by the proportions of cultures grown on agar from infected stems that were W-type or R-type, or were carbendazim-resistant or carbendazim-sensitive. Sensitivity to prochloraz in agar was determined for isolates from populations sampled in 1992 using restricted maximum likelihood analysis of EC50s (concentrations needed to decrease colony growth by 50%), to deal with the unbalanced data, and comparisons were made by Wald statistics. Control by prochloraz was maintained but in 1992, as in some previous years, its application with carbendazim was more effective than its application alone. Selection by prochloraz for strains sensitive to carbendazim continued to occur and may have contributed to its sometimes relatively poorer performance in the absence of carbendazim. R-type isolates taken from prochloraz-treated plots, with or without carbendazim, in 1992 were less sensitive to prochloraz than were isolates from plots untreated with prochloraz. There was evidence of a greater range of sensitivities to prochloraz in R-type than in W-type isolates (although some uncertainty results from the small numbers of W-type isolates obtained from some treatments), which would explain the selection of the R-type by prochloraz. The significance of these findings to modern wheat growing practices is considered.  相似文献   
4.
5.
6.
7.
8.
Kreimer G 《Protist》1999,150(3):311-323
The reflective properties of different types of dinoflagellate eyespots were investigated using confocal laser scanning microscopy in the epireflection contrast mode. Although the eyespots studied differed with respect to localization (cytosol or plastid) and organization of the globule layer(s), all types effectively absorbed and reflected blue-green laser light (principal lines of 488/514 nm). The relative orientation of the eyespot surface towards the light source strongly influenced the reflective properties. Maximal reflection occurred when the eyespot surface was approximately perpendicular to the light source and rapidly decreased at increasing angles of light incidence. Horizontal and vertical optical sectioning of live and fixed cells resolved differences in the reflection patterns. Focusing of reflected light on the basal portion of the longitudinal flagellum was observed for the cytosolic eyespot of Glenodinium sp. and the triple membrane-bounded eyespot of Peridinium foliaceum, presumably a vestige of a host plastid. This flagellum is thought to be mainly involved in mediating orientational movement responses. In contrast, the reflection patterns obtained from the eyespot of Woloszynskia pascheri, which represents the third and most commonly observed dinoflagellate eyespot type within a plastid, point to only minor focusing. Reflection signals could be followed a considerable distance into the sulcus in all cases, indicating that in dinoflagellate eyespots, irrespective of the presumed receptor location (plasma membrane overlying the eyespot and/or the basal part of the longitudinal flagellum), back reflection of non-absorbed light can enhance the excitation probability of the photoreceptor(s). Such a combined reflection/absorption screen allows maximal contrast modulation and will, in conjunction with the specialized geometry of the dinoflagellate eyespots, increase the directionality of these eyespot aparatuses considerably.  相似文献   
9.
樟树内生细菌EBS05发酵条件的研究   总被引:2,自引:0,他引:2  
枯草芽胞杆菌EBS05是从樟树中分离的1株对多种植物病原真菌具有拮抗作用的内生细菌。以小麦纹枯病菌为靶标菌,通过单因素试验和正交设计试验对其发酵条件进行了优化。结果表明,内生细菌EBS05适宜的发酵培养基主要营养成分的组成和配比分别为可溶性淀粉3%、蛋白胨2%、NaCl 0.25%。最佳发酵条件为:初始pH5~9,最适温度34℃,装液量25 mL/250 mL三角瓶,接种量3%,发酵时间72 h。  相似文献   
10.
The genera Esoptrodinium Javornický and Bernardinium Chodat comprise freshwater, athecate dinoflagellates with an incomplete cingulum but differing reports regarding cingulum orientation and the presence of chloroplasts and an eyespot. To examine this reported diversity, six isolates were collected from different freshwater ponds and brought into clonal culture. The isolates were examined using LM to determine major cytological differences, and rDNA sequences were compared to determine relatedness and overall phylogenetic position within the dinoflagellates. All isolates were athecate with a left‐oriented cingulum that did not fully encircle the cell, corresponding to the current taxonomic concept of Esoptrodinium. However, consistent cytological differences were observed among clonal isolates. Most isolates exhibited unambiguous pale green chloroplasts and a distinct bright‐red eyespot located at the base of the longitudinal flagellum. However, one isolate had cryptic chloroplasts that were difficult to observe using LM, and another had an eyespot that was so reduced as to be almost undetectable. Another isolate lacked visible chloroplasts but did possess the characteristic eyespot. Nuclear rDNA phylogenies strongly supported a monophyletic Esoptrodinium clade containing all isolates from this study together with a previous sequence from Portugal, within the Tovelliaceae. Esoptrodinium subclades were largely correlated with cytological differences, and the data suggested that independent chloroplast and eyespot reduction and/or loss may have occurred within this taxon. Overall, the isolates encompassed the majority of cytological diversity reported in previous observations of Bernardinium/Esoptrodinium in field samples. Systematic issues with the current taxonomic distinction between Bernardinium and Esoptrodinium are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号