首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   12篇
  国内免费   7篇
  292篇
  2024年   1篇
  2023年   20篇
  2022年   13篇
  2021年   15篇
  2020年   8篇
  2019年   16篇
  2018年   20篇
  2017年   4篇
  2016年   5篇
  2015年   16篇
  2014年   11篇
  2013年   18篇
  2012年   17篇
  2011年   11篇
  2010年   7篇
  2009年   13篇
  2008年   4篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   17篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
1.
The effects of transforming growth factor-beta 1 (TGF-beta 1) on human hematopoiesis were evaluated in combination with two other regulatory cytokines, namely, recombinant human tumor necrosis factor-alpha (TNF-alpha) and recombinant human interferon-alpha (rIFN-alpha). Combinations of TNF-alpha and TGF-beta 1 resulted in a synergistic suppression of colony formation by erythroid progenitor cells (BFU-E) and an additive suppression of granulocyte-macrophage (CFU-GM) and multipotential (CFU-GEMM) progenitor cells. In addition, TGF-beta 1 synergized with rIFN-alpha to suppress CFU-GM formation, while the combined suppressive effects of both cytokines on CFU-GEMM and BFU-E were additive. When TGF-beta 1 was tested with TNF-alpha or IFN-alpha on granulocyte/macrophage colony-stimulating factor (GM-CSF)-stimulated bone marrow cells in a 5-day proliferation assay, the antiproliferative effects of TGF-beta 1 and TNF-alpha were additive, while those with TGF-beta 1 and rIFN-alpha were synergistic. A similar pattern was seen in the suppression of the myeloblastic cell line KG-1 where TGF-beta 1 in combination with TNF-alpha resulted in an additive suppression while inhibition by TGF-beta 1 and IFN-alpha was synergistic. These results demonstrate for the first time the cooperative effects between TGF-beta and TNF-alpha and IFN-alpha in the suppression of hematopoietic cell growth, raising the possibility that TGF-beta might be used in concert with TNF-alpha or IFN-alpha in the treatment of various myeloproliferative disorders.  相似文献   
2.
A cellular model of hematopoiesis which would be more convenient than bone marrow (BM) progenitors and directly relevant to human pathology is needed in order to investigate xenobiotic toxicity. Human umbilical cord blood (HCB), previously shown to be able to repopulate BM, provides a powerful in vitro model of normal human hematopoiesis. In order to validate the use of normal HCB progenitors as targets for dose-related myelosuppression, we used clonogenic assays and expansion in a liquid culture of progenitor-enriched cell suspensions from HCB. A series of 8 reference molecules, doxorubicin, cytosine-arabinoside, 5-fluorouracil, 3-azido-3-deoxythymidine, acetylsalicyclic acid, sodium valproate and two cephalosporin antibiotics, were tested. In vitro 50% inhibition concentrations (IC50) were compared to those observed or reported with BM progenitors, and to the values of plasma concentrations from treated patients. HCB progenitors as in vitro targets for cytotoxic molecules were easy to access and handle, and their use was sensitive, specific and reproducible. They gave results similar to BM progenitors and allowed a qualitative approach to cellular metabolism and toxicity using morphological, flow cytometric and chromatographic methods.Abbreviations ARA-CC cytosine arabinoside - AS acetylsalicylic acid - AZTT 3-azido-3-deoxythymidine - BFUU burst-forming units - BM bone marrow - CFU colony-forming units - DOXX doxorubicin - FU 5-fluorouracil - glyAA glyAcophorin A - HCB human umbilical cord blood - IU international units - PCMEM human placenta-conditioned medium - VA sodium valproate  相似文献   
3.
Over the last decades, it has become clear that glia are multifunctional and plastic cells endowed with key regulatory roles. They control the response to developmental and/or pathological signals, thereby affecting neural proliferation, remodeling, survival, and regeneration. It is, therefore, important to understand the biology of these cells and the molecular mechanisms controlling their development/activity. The fly community has made major breakthroughs by characterizing the bases of gliogenesis and function. Here we describe the regulation and the role of the fly glial determinant. Then, we discuss the impact of the determinant in cell plasticity and differentiation. Finally, we address the conservation of this pathway across evolution.  相似文献   
4.
5.
The differentiation of myeloid progenitors to mature, terminally differentiated cells is a highly regulated process. Here, we showed that conditional disruption of the c-myb proto-oncogene in adult mice resulted in dramatic reductions in CMP, GMP and MEP myeloid progenitors, leading to a reduction of neutrophils, basophils, monocytes and platelets in peripheral blood. In addition, c-myb plays a critical role at multiple stages of myeloid development, from multipotent CMP and bipotent GMP to unipotent CFU-G and CFU-M progenitor cells. c-myb controls the differentiation of these cells and is required for the proper commitment, maturation and normal differentiation of CMPs and GMPs. Specifically, c-myb regulates the precise commitment to the megakaryocytic and granulo-monocytic pathways and governs the granulocytic-monocytic lineage choice. c-myb is also required for the commitment along the granulocytic pathway for early myeloid progenitor cells and for the maturation of committed precursor cells along this pathway. On the other hand, disruption of the c-myb gene favors the commitment to the monocytic lineage, although monocytic development was abnormal with cells appearing more mature with atypical CD41 surface markers. These results demonstrate that c-myb plays a pivotal role in the regulation of multiple stages in adult myelogenesis.  相似文献   
6.
The BTB-ZF (broad-complex, tramtrack and bric-à-brac - zinc finger) proteins are encoded by at least 49 genes in mouse and man and commonly serve as sequence-specific silencers of gene expression. This review will focus on the known physiological functions of mammalian BTB-ZF proteins, which include essential roles in the development of the immune system. We discuss their function in terminally differentiated lymphocytes and the progenitors that give rise to them, their action in hematopoietic malignancy and roles beyond the immune system.  相似文献   
7.
《Cell Stem Cell》2019,24(5):812-820.e5
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   
8.
9.
Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational colonies with a social hierarchy, and show low cancer incidence and long life-spans. Here we asked if an immune component might underlie such extreme physiology. The largest lymphoid organ is the spleen, which plays an essential role in responding to immunological insults and may participate in combating cancer and slowing ageing. We investigated the anatomy, molecular composition and function of the NM-R spleen using RNA-sequencing and histological analysis in healthy NM-Rs. Spleen size in healthy NM-Rs showed considerable inter-individual variability, with some animals displaying enlarged spleens. In all healthy NM-Rs, the spleen is a major site of adult haematopoiesis under normal physiological conditions. However, myeloid-to-lymphoid cell ratio is increased and splenic marginal zone showed markedly altered morphology when compared to other rodents. Healthy NM-Rs with enlarged spleens showed potentially better anti-microbial profiles and were much more likely to have a high rank within the colony. We propose that the anatomical plasticity of the spleen might be regulated by social interaction and gives immunological advantage to increase the lifespan of higher-ranked animals.  相似文献   
10.
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring aspects of embryoid body (EB) formation efficiency and cell proliferation, and by tracking development of a specific differentiated tissue type-blood-using functional (colony-forming cell) and phenotypic (Flk-1 and CD34 expression) assays. We report that individual murine ES cells form EBs with an efficiency of 42 +/- 9%, but this value is rarely obtained because of EB aggregation-a process whereby two or more individual ES cells or EBs fuse to form a single, larger cell aggregate. Regardless of whether EBs were generated from a single ES cell in methylcellulose or liquid suspension culture, or aggregates of ES cells in hanging drop culture, they grew to a similar maximum cell number of 28,000 +/- 9,000 cells per EB. Among the three methods for EB generation in suspension culture there were no differences in the kinetics or frequency of hematopoietic development. Thus, initiating EBs with a single ES cell and preventing EB aggregation should allow for maximum yield of differentiated cells in the EB system. EB differentiation cultures were also compared to attached differentiation culture using the same outputs. Attached colonies were not similarly limited in cell number; however, hematopoietic development in attached culture was impaired. The percentage of early Flk-1 and CD34 expressing cells was dramatically lower than in EBs cultured in suspension, whereas hematopoietic colony formation was almost completely inhibited. These results provide a foundation for development of efficient, scalable bioprocesses for ES cell differentiation, and inform novel methods for the production of hematopoietic tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号