首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   68篇
  国内免费   22篇
  2023年   7篇
  2022年   9篇
  2021年   22篇
  2020年   21篇
  2019年   13篇
  2018年   17篇
  2017年   26篇
  2016年   23篇
  2015年   28篇
  2014年   16篇
  2013年   42篇
  2012年   25篇
  2011年   17篇
  2010年   19篇
  2009年   19篇
  2008年   33篇
  2007年   24篇
  2006年   28篇
  2005年   18篇
  2004年   23篇
  2003年   35篇
  2002年   10篇
  2001年   12篇
  2000年   19篇
  1999年   17篇
  1998年   16篇
  1997年   10篇
  1996年   13篇
  1995年   5篇
  1994年   10篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
1.
1. Competition alters animal foraging, including promoting the use of alternative resources. It may also impact how animals feed when they are able to handle the same food with more than one tactic. Competition likely impacts both consumers and their resources through its effects on food handling, but this topic has received little attention. 2. Bees often use two tactics for extracting nectar from flowers: they can visit at the flower opening, or rob nectar from holes at the base of flowers. Exploitative competition for nectar is thought to promote nectar robbing. If so, higher competition among floral visitors should reduce constancy to a single foraging tactic as foragers will seek food using all possible tactics. To test this prediction, field observations and two experiments involving bumble bees visiting three montane Colorado plant species (Mertensia ciliata, Linaria vulgaris, Corydalis caseana) were used under various levels of inter- and intra-specific competition for nectar. 3. In general, individual bumble bees remained constant to a single foraging tactic, independent of competition levels. However, bees that visited M. ciliata in field observations decreased their constancy and increased nectar robbing rates as visitation rates by co-visitors increased. 4. While tactic constancy was high overall regardless of competition intensity, this study highlights some intriguing instances in which competition and tactic constancy may be linked. Further studies investigating the cognitive underpinnings of tactic constancy should provide insight on the ways in which animals use alternative foraging tactics to exploit resources.  相似文献   
2.
Flower change in Oenothera drummondii Hooker as a response to pollinators' visits. The colour and shape of flowers of Oenothera drummondii change owing to senescence, pollination and/or nectar withdrawal. This phenomenon is interpreted as a signal emitted by the plant to 'inform' the potential pollinator of its new status as a rewardless flower. This method of signalling might be important for the pollinators in order to save energy in seeking the correct flowers and for the plant to ensure visits to those flowers that have not yet been visited.  相似文献   
3.
Determinants of foraging profitability in two nectarivorous butterflies   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 I studied flower selection and foraging energetics of Agraulis vanillae L. (Nymphalidae) and Phoebis sennae (Pieridae), two butterfly species common to north central Florida. I identified the major nectar resources exploited by several populations of these butterflies and, for each plant species, measured available nectar volumes and concentrations, corolla lengths, and density. I quantified foraging behaviour of each butterfly species at each nectar source (flower visitation rate and percentage of foraging time in flight), and used these data to estimate the net rate of energy intake of each butterfly species at each nectar source.
  • 2 Estimated mean energy contents of individual flowers of the eleven exploited plant species spanned three orders of magnitude, ranging between 0.015 and 9.27 joules. Mean energy content of individual flowers was strongly correlated with mean foraging profit of both butterfly species.
  • 3 Mean nectar volume strongly influenced energy content and varied widely within and among species, ranging from 0.0076 to 1.853 μ1. Nectar concentration varied between 17.1% and 40.4% sucrose-equivalents. Nectar volume was the best single predictor of foraging profitability (correlation coefficients of 0.994 and 0.984 for Phoebis and Agraulis respectively). Corolla length also strongly affected foraging profitability for both butterfly species; flower species with longer corollas were generally more profitable.
  • 4 Flower density and nectar concentration showed weak or nonsignificant associations with foraging profitability.
  • 5 The usefulness and limitations of these floral characteristics as bases for foraging selectivity, and the selective pressures foraging butterflies might place on the visited plants are discussed.
  相似文献   
4.
ABSTRACT.
  • 1 In a given ant species, the number of ants collecting honeydew in an aphid colony or extrafloral nectar on a plant is proportional to the productivity of the colony or plant. Thus, the number of ants per resource unit and the ingestion rate per ant are constant for a species.
  • 2 Mean number of ants per resource unit and ingestion rate per ant differed considerably between the investigated species. The ingestion rate increases with the body size of the species and decreases with an increase of the mean number of ants per resource unit.
  • 3 Ingestion rates were higher in ants foraging singly at the resource than in ants foraging in the normal way in a group.
  • 4 It is suggested that the ingestion rate per ant is reduced below a maximum level by the number of ants present per resource unit because a certain number of ants is needed to defend the resource against alien ants. Small species need more individuals for this purpose than large species, and consequently suffer a larger reduction of their ingestion rate.
  相似文献   
5.
Secretory tissues in vascular plants   总被引:18,自引:3,他引:15  
  相似文献   
6.
Some species of the paleotropical tree genus Macaranga (Euphorbiaceae) live in close association with ants. The genus comprises the full range of species from those not regularly inhabited by ants to obligate myrmecophytes. In Malaysia (Peninsular and Borneo) 23 of the 52 species are known to be ant-associated (44%). The simplest structural adaptation of plants to attract ants are extrafloral nectaries. We studied the distribution of extrafloral nectaries in the genus Macaranga to assess the significance of this character as a possible predisposition for the evolution of obligate myrmecophytism. All species have marginal glands on the leaves. However, only the glands of non- myrmecophytic species function as nectaries, whereas liquids secreted by these glands in myrmecophytic species did not contain sugar. Some non-myrmecophytic Macaranga and transitional Macaranga species in addition have extrafloral nectaries on the leaf blade near the petiole insertion. All obligatorily myrmecophytic Macaranga species, however, lack additional glands on the lamina. The non-myrmecophytic species are visited by a variety of different ant species, whereas myrmecophytic Macaranga are associated only with one specific ant-partner. Since these ants keep scale insects in the hollow stems, reduction of nectary production in ant-inhabited Macaranga seems to be biologically significant. We interpret this as a means of (a) saving the assimilates and (b) stabilization of maintenance of the association's specificity. Competition with other ant species for food rewards is avoided and thereby danger of weakening the protective function of the obligate ant- partner for the plant is reduced. A comparison with other euphorb species living in the same habitats as Macaranga showed that in genera in which extrafloral nectaries are widespread, no myrmecophytes have evolved. Possession of extrafloral nectaries does not appear to be essential for the development of symbiotic ant-plant interactions. Other predispositions such as nesting space might have played a more important role.  相似文献   
7.
RICHARDS, A. J., 1990. Studies in Garcinia , dioecious tropical forest trees: the phenology, pollination biology and fertilization of G. hombroniana Pierre . Garcinia hombroniana is a facultative agamosperm which is pollinated by Trigona bees. Nectar is restricted to the large discoid stigma (or pistillode in male flowers), which also captures and hydrates pollen. The 'wet' stigma and binucleate pollen suggest that Garcinia arose from hermaphrodite plants with a gametophytic self-incompatibility system.
On stigmas, nectar is secreted early on three or four successive days. On male pistillodes, nectar is secreted when anthers dehisce, on the second morning after anthesis. Pollen is most viable when freshly collected, but some viability remains four days after collection. Pollen germinates within 24 h of hydration. Similar results to pollinations are obtained by germinating pollen in 1 % sucrose.
Garcinia hombroniana flowers principally from January to June. Cultivated females are considered as 'big bang' strategists. Male flowers are considered as 'steady state' strategists.  相似文献   
8.
Genetic variances, heritabilities, and genetic correlations of floral traits were measured in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae). A paternal half-sib design was employed to generate seeds in each of four years, and seeds were planted back in the field near the parental site. The progeny were followed for up to eight years to estimate quantitative genetic parameters subject to natural levels of environmental variation over the entire life cycle. Narrow-sense heritabilities of 0.2–0.8 were detected for the morphometric traits of corolla length, corolla width, stigma position, and anther position. The proportion of time spent by the protandrous flowers in the pistillate phase (“proportion pistillate”) also exhibited detectable heritability of near 0.3. In contrast, heritability estimates for nectar reward traits were low and not significantly different from zero, due to high environmental variance between and within flowering years. The estimates of genetic parameters were combined with phenotypic selection gradients to predict evolutionary responses to selection mediated by the hummingbird pollinators. One trait, corolla width, showed the potential for a rapid response to ongoing selection through male function, as it experienced both direct selection, by influencing pollen export, and relatively high heritability. Predicted responses were lower for proportion pistillate and corolla length, even though these traits also experienced direct selection. Stigma position was expected to respond positively to indirect selection of proportion pistillate but negatively to selection of corolla length, with the net effect sensitive to variation in the selection estimates. Anther position also was not directly selected but could respond to indirect selection of genetically correlated traits.  相似文献   
9.
We studied the nectar characteristics in relation to flower age of the summer flowering Mediterranean shrubCapparis spinosa in three localities in Southern Greece. Anthesis was nocturnal. Nectar volume, concentration, and sucrose/hexose ratio varied with site, year, and between individual plants; amino acid concentration varied only with site. The sucrose/hexose ratio decreased considerably with flower age, while the glucose/fructose ratio remained constant (ca. 1), implying that nectar sucrose broke down in the course of anthesis. Sugar breakdown increased with water content of nectar. Amino acid concentration was strongly age-dependent: It was low in fresh flowers, relatively high in middle-aged ones (except aspartic acid that was extremely increased), and very high in senescent ones. We attribute the amino acid changes to phenomena related to flower senescence in the dark.  相似文献   
10.
This report shows that one of the most important roles of the flower nectar of an autogamous perennialRorippa indica (L.) Hieron is as an attractant for employing some ant species as a defense against herbivorous insects. The plant has flowers from spring to early winter. Its flower nectar is frequently stolen by some ant species (hereafter cited as ants) which also feed on small herbivorous insects on the plant. Internations among the tritrophic levels (R. indica, herbivores, ants) were experimentally examined and the followings became clear. (1) Ants were attracted toR. indica in search of its flower nectar. (2) The gradual secretion of flower nectar seemed to detain ants on the plant. (3)Pieris butterfly lavae were the major herbivores onR. indica and were potentially harmful to the plant. (4) The presence of ants reduced the survival rate ofP. rapae larvae onR. indica. (5) The presence of ants reduced the feeding damage toR. indica. (6) The disadvantage of nectar use by ants seemed to be minimal for the plant since the ants did not disturb the other flower visitors. These facts suggest a mutualistic relationship betweenR. indica and ants. That is, the flower nectar serves as an indirect defense against herbivorous insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号