首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   16篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   5篇
  2011年   3篇
  2010年   6篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1993年   4篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
1.
Species loss is a global issue. With up to a million species at risk and insufficient protected area to maintain the world's biodiversity, humanity will increasingly need to rely on species re‐introductions to locally restore diversity and function. However, such restoration attempts are bound to fail when ecological communities get locked in a closed state that is resistant to recovery. It is presently unknown how to repair these closed systems. We use mathematical models to identify ways out of this problem. We first show how ecological communities may enter a closed state, to then explain how to open them up again for restoration of their original diversity. We find that restoration is often still possible shortly after initial species loss, as (1) the secondary extinctions that produce closure have not happened yet and (2) mild population fluctuations still allow successful repair during a transient postdisturbance phase. However, after this typically short window of opportunity for restoration, the system enters a new equilibrium, which may be a closed state. Our analysis shows how to take ecological communities out of the closed state: Appropriate management of carrying capacities produces a regime of mild population fluctuations that opens a window for successful species re‐introductions. These windows can be perpetually recurring or permanently open. Such opportunities for repair can be absent under regimes of wild cycles or perfect stability. We conclude that mild cycles may open windows of opportunity for the repair of communities that have become resistant to recovery.  相似文献   
2.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   
3.
Species extinctions alter ecosystem services, and the magnitude of this impact is likely to change across environmental gradients. In Australia, soil‐disturbing mammals that are now considered ecologically extinct are thought to be important ecosystem engineers. Previous studies have demonstrated microsite‐level impacts of reintroduced soil‐disturbing mammals on soil functions, but effects are yet to be tested across larger scales. Further, it is unclear how impacts vary across environmental gradients and if the restoration potential of reintroductions changes with climate. We examined the effects of soil‐disturbing mammal reintroductions across a large rainfall gradient in Australia to test the hypothesis that ecosystem engineering effects on soil function depend on climate. We compared soil labile carbon, available nitrogen and the activity of four enzymes associated with nutrient cycling in three microsite types with and without soil‐disturbing mammals in five sites along a large rainfall gradient (166–870 mm). Soil enzyme activity was greatest in the presence of soil‐disturbing mammals and increased with rainfall, but soil available carbon and nitrogen varied across the gradient and among microsites. Microsite effects were often stronger than any effects of soil‐disturbing mammals, with soil beneath vegetated patches (shrubs and trees) having greater enzyme activity, carbon and nitrogen than bare soils. However, soil‐disturbing mammals homogenised nutrient distributions across microsites. The impacts of soil‐disturbing mammals on soil function previously detected at micro‐scales was detected at a landscape‐scale. However, the overall effects of soil‐disturbing mammals on soil functions varied with productivity (rainfall). The context of soil‐disturbing mammal reintroductions is thus likely to be critical in determining their effectiveness in restoring soil function.  相似文献   
4.
During and after the Cambrian explosion, very large marine invertebrate species have evolved in several groups. Gigantism in Carboniferous land invertebrates has been explained by a peak in atmospheric oxygen concentrations, but Palaeozoic marine invertebrate gigantism has not been studied empirically and explained comprehensively. By quantifying the spatiotemporal distribution of the largest representatives of some of the major marine invertebrate clades (orthoconic cephalopods, ammonoids, trilobites, marine eurypterids), we assessed possible links between environmental parameters (atmospheric or oceanic oxygen concentrations, ocean water temperature or sea level) and maximum body size, but we could not find a straightforward relationship between both. Nevertheless, marine invertebrate gigantism within these groups was temporally concentrated within intervals of high taxonomic diversity (Ordovician, Devonian) and spatially correlated with latitudes of high occurrence frequency. Regardless of whether temporal and spatial variation in sampled diversity and occurrence frequency reflect true biological patterns or sampling controls, we find no evidence that the occurrences of giants in these groups were controlled by optimal conditions other than those that controlled the group as a whole; if these conditions shift latitudinally, occurrences of giants will shift as well. It is tempting to attribute these shifts to contemporary changes in temperature, oxygen concentrations in the atmosphere and the oceans as well as global palaeogeography over time, but further collection‐based studies are necessary on finer stratigraphic and phylogenetic resolution to corroborate such hypotheses and rule out sampling or collection biases.  相似文献   
5.
Anthropogenic rise in the carbon dioxide concentration in the atmosphere leads to global warming and acidification of the oceans. Ocean acidification (OA) is harmful to many organisms but especially to those that build massive skeletons of calcium carbonate, such as reef corals. Here, we test the recent suggestion that OA leads not only to declining calcification of reef corals and reduced growth rates of reefs but may also have been a trigger of ancient reef crises and mass extinctions in the sea. We analyse the fossil record of biogenic reefs and marine organisms to (1) assess the timing and intensity of ancient reef crises, (2) check which reef crises were concurrent with inferred pulses of carbon dioxide concentrations and (3) evaluate the correlation between reef crises and mass extinctions and their selectivity in terms of inferred physiological buffering. We conclude that four of five global metazoan reef crises in the last 500 Myr were probably at least partially governed by OA and rapid global warming. However, only two of the big five mass extinctions show geological evidence of OA.  相似文献   
6.
The plant fossil record was reviewed to highlight how consideration of plant carbon balance strengthens our understanding of various evolutionary innovation and extinction events. Following a brief physiological primer to carbon acquisition and allocation in C3‐plants, specific evolutionary events are discussed in connection with postulated carbon‐based mechanisms. Primary topics include: (i) the evolution of plants with the C4‐photosynthetic pathway; (ii) the surprising lack of plant extinctions during the Pleistocene (1.6 million years ago, Ma); (iii) the trend toward declining plant diversity and increasing rates of herbivory across the Palaeocene/Eocene transition (57–52 Ma); and (iv) megaherbivore extinctions at the end of the Pleistocene (10 thousand years ago, Ka). A framework is presented for testing hypotheses on the cause–effect relationships between global carbon cycling, plant carbon dynamics and the evolution of terrestrial ecosystems.  相似文献   
7.
Polewards expansions of species' distributions have been attributed to climate warming, but evidence for climate‐driven local extinctions at warm (low latitude/elevation) boundaries is equivocal. We surveyed the four species of butterflies that reach their southern limits in Britain. We visited 421 sites where the species had been recorded previously to determine whether recent extinctions were primarily due to climate or habitat changes. Coenonympha tullia had become extinct at 52% of study sites and all losses were associated with habitat degradation. Aricia artaxerxes was extinct from 50% of sites, with approximately one‐third to half of extinctions associated with climate‐related factors and the remainder with habitat loss. For Erebia aethiops (extinct from 24% of sites), approximately a quarter of the extinctions were associated with habitat and three‐quarters with climate. For Erebia epiphron, extinctions (37% of sites) were attributed mainly to climate with almost no habitat effects. For the three species affected by climate, range boundaries retracted 70–100 km northwards (A. artaxerxes, E. aethiops) and 130–150 m uphill (E. epiphron) in the sample of sites analysed. These shifts are consistent with estimated latitudinal and elevational temperature shifts of 88 km northwards and 98 m uphill over the 19‐year study period. These results suggest that the southern/warm range margins of some species are as sensitive to climate change as are northern/cool margins. Our data indicate that climate warming has been of comparable importance to habitat loss in driving local extinctions of northern species over the past few decades; future climate warming is likely to jeopardize the long‐term survival of many northern and mountain species.  相似文献   
8.
9.
Food-web structure mediates dramatic effects of biodiversity loss including secondary and `cascading' extinctions. We studied these effects by simulating primary species loss in 16 food webs from terrestrial and aquatic ecosystems and measuring robustness in terms of the secondary extinctions that followed. As observed in other networks, food webs are more robust to random removal of species than to selective removal of species with the most trophic links to other species. More surprisingly, robustness increases with food-web connectance but appears independent of species richness and omnivory. In particular, food webs experience `rivet-like' thresholds past which they display extreme sensitivity to removal of highly connected species. Higher connectance delays the onset of this threshold. Removing species with few trophic connections generally has little effect though there are several striking exceptions. These findings emphasize how the number of species removed affects ecosystems differently depending on the trophic functions of species removed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号