首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   5篇
  20篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2005年   1篇
  2002年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
The unprecedented increase of the power conversion efficiency of metal‐halide perovskite solar cells has significantly outpaced the understanding of their fundamental properties. One of the biggest puzzles of perovskites has been the exciton binding energy, which has proved to be difficult to determine experimentally. Many contradictory reports can be found in the literature with values of the exciton binding energy from a few meV to a few tens of meV. In this review the results of the last few years of intense investigation of the exciton physic in perovskite materials are summarized. In particular a critical overview of the different experimental approaches used to determine exciton binding energy is provided. The problem of exciton binding energy in the context of the polar nature of perovskite crystals and related polaron effects which have been neglected to date in most of work is discussed. It is shown that polaron effects can reconcile at least some of the experimental observations and controversy present in the literature. Finally, the current status of the exciton fine structure in perovskite materials is summarized. The peculiar carrier–phonon coupling can help to understand the intriguing efficiency of light emission from metal‐halide perovskites.  相似文献   
2.
In organic semiconductors, optical excitation does not necessarily produce free carriers. Very often, electron and hole are bound together to form an exciton. Releasing free carriers from the exciton is essential for the functioning of photovoltaics and optoelectronic devices, but it is a bottleneck process because of the high exciton binding energy. Inefficient exciton dissociation can limit the efficiency of organic photovoltaics. Here, nanoscale features that can allow the free carrier generation to occur spontaneously despite being an energy uphill process are determined. Specifically, by comparing the dissociation dynamics of the charge transfer (CT) exciton at two donor–acceptor interfaces, it is found that the relative orientation of the electron and hole wavefunction within a CT exciton plays an important role in determining whether the CT exciton will decompose into the higher energy free electron–hole pair or relax to the lower energy tightly‐bound CT exciton. The concept of the entropic driving force is combined with the structural anisotropy of typical organic crystals to devise a framework that can describe how the orientation of the delocalized electronic wavefunction can be manipulated to favor the energy‐uphill spontaneous dissociation of CT excitons over the energy‐downhill CT exciton cooling.  相似文献   
3.
The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge‐transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near‐ultraviolet‐harvesting OPVs—has largely not been investigated. Here, aggregation‐induced room‐temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open‐circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy‐band splitting result in ultrafast CT and charge separation with nonradiative energy losses of <250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next‐generation active materials and films for near‐ultraviolet OPVs with open‐circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy‐atom‐containing active materials. Molecular aggregation through thin‐film processing provides an alternative route to accessing 100% triplet states on photoexcitation.  相似文献   
4.
Triplet exciton formation in neat 7,7‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′] dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c][1,2,5]thiadiazole) (p‐DTS(FBTTh2)2) and blends with [6,6]‐Phenyl C70 butyric acid methyl ester (PC70BM), with and without the selective solvent additive 1,8‐diiodooctane, is investigated by means of spin sensitive photoluminescence measurements. For all three material systems, a significant amount of long living triplet excitons is detected, situated on the p‐DTS(FBTTh2)2 molecules. The characteristic zero‐field splitting parameters for this state are identified to be D = 42 mT (1177 MHz) and E = 5 mT (140 MHz). However, no triplet excitons located on PC70BM are detectable. Using electrically detected spin resonance, the presence of these triplet excitons is confirmed even at room temperature, highlighting that triplet excitons form during solar cell operation and influence the photocurrent and photovoltage. Surprisingly, the superior performing blend is found to have the largest triplet population. It is concluded, that the formation of triplet excitons from charge transfer states via electron back transfer has no crucial impact on device performance in p‐DTS(FBTTh2)2:PC70BM based solar cells.  相似文献   
5.
Photoluminescence studies of the charge transfer exciton emission from a narrow‐bandgap polymer‐based bulk heterojunction are reported. The quantum yield of this emission is as high as 0.03%. Low temperature measurements reveal that while the dynamics of the singlet exciton is slower at low temperature, the dynamics of the charge transfer exciton emission is temperature independent. This behavior rules out any diffusion process of the charge transfer excitons and energy transfer from these interfacial states toward lower lying states. Photoluminescence measurements performed on the device under bias show a reduction (but not the total suppression) of the charge transfer exciton recombination. Finally, based on the low temperature results the role of the charge transfer excitons and the possible pathways to populate them are identified.  相似文献   
6.
Hole-burned absorption and line-narrowed fluorescence spectra are studied at 5 K in wild type and mutant LH1 and LH2 antenna preparations from the photosynthetic purple bacterium Rhodobacter sphaeroides. Evidence was found in all samples, even in intact membranes, of the presence of a broad distribution of bacteriochlorophyll species that are unable to communicate energy between each other and to the exciton states of functional antenna complexes. The distribution maximum of these localized species determined by zero phonon hole action spectroscopy is at 783.5 nm in purified LH1 complexes and at 786.8 nm in B850-only mutant LH2 complexes. A well-resolved peak at 807 nm in LH1 complexes is assigned to the exciton band structure of functional core antenna complexes. Similar structure in LH2 complexes overlaps with the distribution of localized species. Off-diagonal (structural) disorder may be responsible for this exciton band structure. Our data also imply that pair-wise inter-chlorophyll couplings determine the resonance fluorescence lineshape of excitonic polarons.  相似文献   
7.
Among his many contributions to photosynthesis, William Arnold made critical suggestions about the mechanism of the initial stages of excitation energy transfer and its measurement. Thus he helped found not only the general concept of the photosynthetic unit but also the key idea behind the detailed functional aspects of its chlorophyll antenna. We review the development of these ideas and the modern form in which they have emerged.Abbreviations Chl chlorophyll - Pc phycocyanin - PSU photosynthetic unit - RC reaction center  相似文献   
8.
The light-harvesting complex (LHC) of higher plants isolated using Triton X-100 has been studied during its transformation into a monomeric form known as CPII. The change was accomplished by gradually increasing the concentration of the detergent, sodium dodecyl sulfate (SDS). Changes in the red spectral region of the absorption, circular dichroism (CD), and linear dichroism spectra occurring during this treatment have been observed at room temperature. According to a current hypothesis the main features of the visible region absorption and CD spectra of CPII can be explained reasonably successfully in terms of an exciton coupling among its chlorophyll (Chl) b molecules. We suggest that the spectral differences between the isolated LHC and the CPII may be understood basically in terms of an exciton coupling between the Chl b core of a given CPII unit and at least one of the Chla's of either the same or the adjacent CPII. We propose that this Chl a-Chl b coupling existing in LHC disappears upon segregation into CPII, probably as a result of a detergent-related overall rotation of the strongly coupled Chl b core which changes the relative orientations of the two types of pigments and thus the nature of their coupling.Abbreviations Chl Chlorophyll - CD Circular dichroism - LD Linear dichroism - LHC Light-harvesting complex - SDS Sodium dodecyl sulfate - CPII A solubilized form of LHC obtained with SDS polyacrylamide gel electrophoresis Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   
9.
10.
The aim of the present paper is to aid biologists understand the complex physical problems of intramolecular energy transfer, in particular, between antenna (bacterio) chlorophyll molecules in vivo.The author has attempted, in the first part of the paper, to explain complicated processes of excitation transfer in a language understandable to readers with knowledge in fundamentals of general physics, but not in molecular optics.The second part of this paper is a critical review relevant to the specifics of physical theories and their applicability to the problem of energy transfer in antenna (bacterio) chlorophylls ((B) Chls) to reaction centers (RCs) in the photosynthetic organisms.Abbreviations PSU photosynthetic unit - RC reaction center - Chl chlorophyll - BChl bacteriochlorophyll - r intrinsic radiactive lifetime - fl fluorescence lifetime - fl fluorescence quantum yield - S* singlet excited state of a molecule  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号