首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   4篇
  国内免费   3篇
  2024年   1篇
  2023年   6篇
  2022年   2篇
  2021年   10篇
  2020年   8篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2014年   4篇
  2013年   12篇
  2012年   8篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1985年   3篇
  1983年   3篇
  1978年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
1.
1. A methyl-4-azidobenzimidyl (MAB) derivative of the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) specifically labels only the alpha subunit of the rat brain sodium channel in synaptosomes or in purified and reconstituted sodium-channel preparations. 2. Unlike previous photoreactive toxin derivaties, binding and photolabeling by MAB-LqTx are allosterically modulated by tetrodotoxin and batrachotoxin, as observed for native LqTx binding to sodium channels in synaptosomes. 3. Proteolytic cleavage of the alpha subunit photolabeled with MAB-LqTx shows that the label is located within a 60 to 70-kDa protease-resistant core structure in domain I of the sodium-channel alpha subunit. 4. MAB-LqTx will be valuable in further defining the structure-activity relationships at the alpha-scorpion toxin receptor site.  相似文献   
2.
Summary Measurements of the changes in birefringence associated with changes in membrane potential were made with internally perfused squid giant axons in low sodium solutions at 0–8°C. The time course of the birefringence changes share many properties of the gating (polarization) currents previously studied in this nerve. Both can be demonstrated as an asymmetry in the response to voltage pulses symmetrical about the resting potential which is not present about a hyperpolarized holding potential. Both have a rapid relaxation, which precedes the sodium permeability change. Both exhibit an initial delay or rising phase. Both are reversibly blocked by perfusion with 30mm colchicine; neither are altered by changes on sodium concentrations or 300nm tetrodotoxin. The birefringence response has a decrease in the amplitude of the rapid relaxation associated with the appearance of a slow relaxation. This is similar to the immobilization of fast gating charges which parallels sodium current inactivation.The amplitude of the birefringence and the gating current responses is consistent with a change in the alignment of several hundred peptide bonds per sodium channel.  相似文献   
3.
Summary The axon membrane is simulated by standard Hodgkin-Huxley leakage and potassium channels plus a coupled transient excited state kinetic scheme for the sodium channel. This scheme for the sodium channel is as proposed previously by the author. Simultations are presented showing the form of the action potential, threshold behavior, accommodation, and repetitive firing. It is seen that the form of the individual action potential, its all-or-none nature, and its refractory period are well simulated by this model, as they are by the standard Hodgkin-Huxley model. However, the model differs markedly from the Hodgkin-Huxley model with respect to repetitive firing and accommodation to stimulating currents of slowly rising intensity, in ways that are anomn to be related to those features of the sodium inactivation which are anomalous to the H-H model. The tendency for repetitive firing is highly dependent on that parameter which primarily determintes the existence of the inactivation shift in voltage clamp experiments, in such a way that the more pronounced the inactivation shift, the less the tendency for repetitive firing,. The tendency for accommodation is highly dependent on that parameter which primarily determines the “τc − τh” separation, in such a way that the greater the separation the greater the tendency for the membrane to accommodate without firing action potentials to a slowly rising current.  相似文献   
4.
5.
Wide Dynamic Range (WDR) neurons in the spinal cord receive inputs from the contralateral side that, under normal conditions, are ineffective in generating an active response. These inputs are effective when the target WDRs change their excitability conditions. To further reveal the mechanisms supporting this effectiveness shift, we investigated the weight of the excitation of the contralateral neurons on the target WDR responses. In the circuit of presynaptic (sending) and postsynaptic (receiving) neurons in crossed spinal connections the fibres that form the presynaptic neurons impinge on postsynaptic neurons can be considered the final relay of this contralateral pathway. The enhancement of the presynaptic neuron excitability may thus modify the efficacy of the contralateral input. Pairs of neurons each on a side of the spinal cord, at the L5–L6 lumbar level were simultaneously recorded in intact, anaesthetized, paralysed rats. The excitatory aminoacid NMDA and strychnine, the antagonist of the inhibitory aminoacid glycine, were iontophoretically administrated to presynaptic neurons to increase their excitability. Before and during the drug administration, spontaneous and noxious-evoked activities of the neurons were analysed. During the iontophoresis of the two substances we found that noxious stimuli applied to the receptive field of presynaptic neurons activated up to 50% of the previously unresponsive postsynaptic neurons on the opposite side. Furthermore, the neurons on both sides of the spinal cord showed significantly increased spontaneous activity and amplified responses to ipsilateral noxious stimulation. These findings indicate that the contralateral input participates in the circuit dynamics of spinal nociceptive transmission, by modulating the excitability of the postsynaptic neurons. A possible functional role of such a nociceptive transmission circuit in neuronal sensitization following unilateral nerve injury is hypothesized.  相似文献   
6.
7.
Extracellular matrix molecules--including chondroitin sulfate proteoglycans, hyaluronan, and tenascin-R--are enriched in perineuronal nets (PNs) associated with subsets of neurons in the brain and spinal cord. In the present study, we show that similar cell type-dependent extracellular matrix aggregates are formed in dissociated cell cultures prepared from early postnatal mouse hippocampus. Starting from the 5th day in culture, accumulations of lattice-like extracellular structures labeled with Wisteria floribunda agglutinin were detected at the cell surface of parvalbumin-expressing interneurons, which developed after 2-3 weeks into conspicuous PNs localized around synaptic contacts at somata and proximal dendrites, as well as around axon initial segments. Physiological recording and intracellular labeling of PN-expressing neurons revealed that these are large fast-spiking interneurons with morphological characteristics of basket cells. To study mechanisms of activity-dependent formation of PNs, we performed pharmacological analysis and found that blockade of action potentials, transmitter release, Ca2+ permeable AMPA subtype of glutamate receptors or L-type Ca2+ voltage-gated channels strongly decreased the extracellular accumulation of PN components in cultured neurons. Thus, we suggest that Ca2+ influx via AMPA receptors and L-type channels is necessary for activity-dependent formation of PNs. To study functions of chondroitin sulfate-rich PNs, we treated cultures with chondroitinase ABC that resulted in a prominent reduction of several major PN components. Removal of PNs did not affect the number and distribution of perisomatic GABAergic contacts but increased the excitability of interneurons in cultures, implicating the extracellular matrix of PNs in regulation of interneuronal activity.  相似文献   
8.
The year 2009 marks the tenth anniversary of the founding of Institute of Neuroscience (ION) in the Shanghai campus of Chinese Academy of Sciences.  相似文献   
9.
Chronic exposure to psychostimulants induces neuro-adaptations in ion channel function of dopamine (DA)-innervated cells localized within the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Although neuroplasticity in ion channel function is initially found in drug-sensitized animals, it has recently been believed to underlie the withdrawal effects of cocaine, including craving that leads to relapse in human addicts. Recent studies have also revealed remarkable differences in altered ion channel activities between mPFC pyramidal neurons and medium spiny NAc neurons in cocaine-withdrawn animals. In response to psychostimulant or certain “excitatory” stimuli, increased intrinsic excitability is found in mPFC pyramidal neurons, whereas decreased excitability is observed in medium spiny NAc cells in drug-withdrawn animals compared to drug-free control animals. These changes in ion channel function are modulated by interrupted DA/Ca2+ signaling with decreased DA D2 receptor function but increased D1 receptor signaling. More importantly, they are correlated to behavioral changes in cocaine-withdrawn human addicts and sensitized animals. Based on growing evidence, researchers have proposed that cocaine-induced neuro-adaptations in ion channel activity and DA/Ca2+ signaling in mPFC pyramidal neurons and medium spiny NAc cells may be the fundamental cellular mechanism underlying the cocaine withdrawal effects observed in human addicts.  相似文献   
10.
N. G. Bibikov 《Biophysics》2006,51(2):277-284
The estimation of conditional probability was used to demonstrate the effect of the postspike changes in neuron excitability on its response to the second burst in a pair with an interval between bursts ranging from 50 to 200 ms. The responses of the neurons of the inferior colliculus to pairs of low-intensity tone bursts were recorded extracellularly in anesthetized albino mice. The probability of the response to the second burst in a pair was estimated under two conditions: the presence and the absence of a spike in the response to the first burst. If the interval between burst was 50 ms, the probability of response was decreased in most neurons where there was a spike in the response to the first burst. The opposite trend was observed in a small proportion of neurons. If the interval was increased, it weakened the dependence of the response to the second burst on the character of the response to the first one. The suppression of inhibitory inputs by bicuculline emphasized the postspike refractoriness rather than canceled it. The possible mechanisms of the interdependence between the responses to two consecutive signals are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号