首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3967篇
  免费   508篇
  国内免费   168篇
  2024年   11篇
  2023年   146篇
  2022年   162篇
  2021年   245篇
  2020年   236篇
  2019年   257篇
  2018年   219篇
  2017年   192篇
  2016年   202篇
  2015年   221篇
  2014年   272篇
  2013年   324篇
  2012年   199篇
  2011年   208篇
  2010年   143篇
  2009年   159篇
  2008年   164篇
  2007年   180篇
  2006年   158篇
  2005年   139篇
  2004年   103篇
  2003年   97篇
  2002年   73篇
  2001年   79篇
  2000年   53篇
  1999年   52篇
  1998年   26篇
  1997年   49篇
  1996年   34篇
  1995年   25篇
  1994年   30篇
  1993年   28篇
  1992年   25篇
  1991年   12篇
  1990年   18篇
  1989年   15篇
  1988年   9篇
  1987年   18篇
  1986年   10篇
  1985年   2篇
  1984年   12篇
  1983年   3篇
  1982年   3篇
  1981年   9篇
  1980年   5篇
  1978年   5篇
  1976年   2篇
  1973年   1篇
  1972年   3篇
  1970年   2篇
排序方式: 共有4643条查询结果,搜索用时 15 毫秒
1.
A number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently, a common approach is to perform separate analyses on subsets of sequences and compare parameter estimates in a post hoc fashion. This approach is statistically suboptimal and not always applicable. Here, we develop a simple extension of a popular fixed effects likelihood method in the context of codon-based evolutionary phylogenetic maximum likelihood testing, Contrast-FEL. It is suitable for identifying individual alignment sites where any among the K2 sets of branches in a phylogenetic tree have detectably different ω ratios, indicative of different selective regimes. Using extensive simulations, we show that Contrast-FEL delivers good power, exceeding 90% for sufficiently large differences, while maintaining tight control over false positive rates, when the model is correctly specified. We conclude by applying Contrast-FEL to data from five previously published studies spanning a diverse range of organisms and focusing on different evolutionary questions.  相似文献   
2.
Human life expectancy in developed countries has increased steadily for over 150 years, through improvements in public health and lifestyle. More people are hence living long enough to suffer age-related loss of function and disease, and there is a need to improve the health of older people. Ageing is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. This view has been reinforced by the realization that ageing is a disadvantageous trait that evolves as a side effect of mutation accumulation or a benefit to the young, because of the decline in the force of natural selection at later ages. However, important recent discoveries are that mutations in single genes can extend lifespan of laboratory model organisms and that the mechanisms involved are conserved across large evolutionary distances, including to mammals. These mutations keep the animals functional and pathology-free to later ages, and they can protect against specific ageing-related diseases, including neurodegenerative disease and cancer. Preliminary indications suggest that these new findings from the laboratory may well also apply to humans. Translating these discoveries into medical treatments poses new challenges, including changing clinical thinking towards broad-spectrum, preventative medicine and finding novel routes to drug development.  相似文献   
3.
4.
Intra‐cohort cannibalism is an example of a size‐mediated priority effect. If early life stages cannibalize slightly smaller individuals, then parents face a trade‐off between breeding at the best time for larval growth or development and predation risk from offspring born earlier. This game‐theoretic situation among parents may drive adaptive reproductive phenology toward earlier breeding. However, it is not straightforward to quantify how cannibalism affects seasonal egg fitness or to distinguish emergent breeding phenology from alternative adaptive drivers. Here, we devise an age‐structured game‐theoretic mathematical model to find evolutionary stable breeding phenologies. We predict how size‐dependent cannibalism acting on eggs, larvae, or both changes emergent breeding phenology and find that breeding under inter‐cohort cannibalism occurs earlier than the optimal match to environmental conditions. We show that emergent breeding phenology patterns at the level of the population are sensitive to the ontogeny of cannibalism, that is, which life stage is subject to cannibalism. This suggests that the nature of cannibalism among early life stages is a potential driver of the diversity of reproductive phenologies seen across taxa and may be a contributing factor in situations where breeding occurs earlier than expected from environmental conditions.  相似文献   
5.
6.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
7.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
Highlights
  • •Sufficient tumor tissues are often unavailable large HLA peptidome discovery.
  • •Using patient derived xenograft (PDX) tumors can overcome this limitation.
  • •The large PDX HLA peptidomes expand significantly those of the original biopsies.
  • •The HLA peptidomes of the PDX tumors included many tumor antigens.
  相似文献   
8.
Summary Proponents of Developmental Systems Theory (DST) argue that it offers an alternative to current research programs in biology that are built on the historic disjunction between evolutionary and developmental biology. In this paper I illustrate how DST can be used to account for the acquisition of an important component of moral agency, conscience. Susan Oyama, a major proponent of DST, has set moral issues outside the compass of DST. Thus, I examine her reasons for restricting DST to non-moral matters, and argue that they are not decisive. On the positive side, I argue that DST not only is compatible with attempts to describe and explain moral agency but also aids us in understanding it. In particular, I show how DST can provide a fruitful perspective for viewing some significant current findings and theories in moral developmental psychology about the acquisition of conscience. The familiar dichotomies resisted by DST, those between genes and environment, inherited and acquired, innate and learned, and biological and cultural, have also plagued human developmental psychology, including moral development. By bringing a DST perspective to the study of moral development, I illustrate how a DST perspective might offer a promising way to reconceive that phenomenon, and provide some insights into how further work in understanding the development of moral agency might proceed. Thus, I hope to contribute to the current efforts of proponents of DST to integrate developmental and evolutionary considerations.  相似文献   
9.
PurposeThe main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties.Materials and methodsThe elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40–50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.ResultsThis study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19–5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.ConclusionThis study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号