全文获取类型
收费全文 | 2821篇 |
免费 | 106篇 |
国内免费 | 47篇 |
专业分类
2974篇 |
出版年
2025年 | 5篇 |
2024年 | 57篇 |
2023年 | 83篇 |
2022年 | 71篇 |
2021年 | 125篇 |
2020年 | 130篇 |
2019年 | 152篇 |
2018年 | 102篇 |
2017年 | 114篇 |
2016年 | 123篇 |
2015年 | 136篇 |
2014年 | 147篇 |
2013年 | 182篇 |
2012年 | 122篇 |
2011年 | 110篇 |
2010年 | 81篇 |
2009年 | 119篇 |
2008年 | 128篇 |
2007年 | 115篇 |
2006年 | 101篇 |
2005年 | 92篇 |
2004年 | 80篇 |
2003年 | 76篇 |
2002年 | 60篇 |
2001年 | 61篇 |
2000年 | 44篇 |
1999年 | 42篇 |
1998年 | 25篇 |
1997年 | 45篇 |
1996年 | 35篇 |
1995年 | 21篇 |
1994年 | 21篇 |
1993年 | 26篇 |
1992年 | 23篇 |
1991年 | 10篇 |
1990年 | 15篇 |
1989年 | 14篇 |
1988年 | 9篇 |
1987年 | 18篇 |
1986年 | 8篇 |
1985年 | 2篇 |
1984年 | 11篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 9篇 |
1980年 | 6篇 |
1978年 | 5篇 |
1976年 | 2篇 |
1973年 | 1篇 |
1972年 | 2篇 |
排序方式: 共有2974条查询结果,搜索用时 15 毫秒
1.
Berthold Lausen Torsten Hothorn Frank Bretz Martin Schumacher 《Biometrical journal. Biometrische Zeitschrift》2004,46(3):364-374
The identification and assessment of prognostic factors is one of the major tasks in clinical research. The assessment of one single prognostic factor can be done by recently established methods for using optimal cutpoints. Here, we suggest a method to consider an optimal selected prognostic factor from a set of prognostic factors of interest. This can be viewed as a variable selection method and is the underlying decision problem at each node of various tree building algorithms. We propose to use maximally selected statistics where the selection is defined over the set of prognostic factors and over all cutpoints in each prognostic factor. We demonstrate that it is feasible to compute the approximate null distribution. We illustrate the new variable selection test with data of the German Breast Cancer Study Group and of a small study on patients with diffuse large B‐cell lymphoma. Using the null distribution for a p‐value adjusted regression trees algorithm, we adjust for the number of variables analysed at each node as well. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
3.
Piscine novirhabdovirus = Viral Hemorrhagic Septicemia Virus (VHSV) first appeared in the Laurentian Great Lakes with large outbreaks from 2005 to 2006, as a new and novel RNA rhabdovirus subgenogroup (IVb) that killed >30 fish species. Interlude periods punctuated smaller more localized outbreaks in 2007, 2010, and 2017, although some fishes tested positive in the intervals. There have not been reports of outbreaks or positives from 2018, 2019, or 2020. Here, we employ a combined population genetics and phylogenetic approach to evaluate spatial and temporal evolutionary trajectory on its G‐gene sequence variation, in comparison with whole‐genome sequences (11,083 bp) from a subset of 44 individual isolates (including 40 newly sequenced ones). Our results show that IVb (N = 184 individual fish isolates) diversified into 36 G‐gene haplotypes from 2003 to 2017, stemming from two originals (“a” and “b”). G‐gene haplotypes “a” and “b” differed by just one synonymous single‐nucleotide polymorphism (SNP) substitution, remained the most abundant until 2011, then disappeared. Group “a” descendants (14 haplotypes) remained most prevalent in the Upper and Central Great Lakes, with eight (51%) having nonsynonymous substitutions. Group “b” descendants primarily have occurred in the Lower Great Lakes, including 22 haplotypes, of which 15 (68%) contained nonsynonymous changes. Evolutionary patterns of the whole‐genome sequences (which had 34 haplotypes among 44 isolates) appear congruent with those from the G‐gene. Virus populations significantly diverged among the Upper, Central, and Lower Great Lakes, diversifying over time. Spatial divergence was apparent in the overall patterns of nucleotide substitutions, while amino acid changes increased temporally. VHSV‐IVb thus significantly differentiated across its less than two decades in the Great Lakes, accompanied by declining outbreaks and virulence. Continuing diversification likely allowed the virus to persist at low levels in resident fish populations, and may facilitate its potential for further and future spread to new habitats and nonacclimated hosts. 相似文献
4.
Antonio Ballell Benjamin C. Moon Laura B. Porro Michael J. Benton Emily J. Rayfield 《Palaeontology》2019,62(6):867-887
During the Mesozoic, Crocodylomorpha had a much higher taxonomic and morphological diversity than today. Members of one particularly successful clade, Thalattosuchia, are well‐known for being longirostrine: having long, slender snouts. It has generally been assumed that Thalattosuchia owed their success in part to the evolution of longirostry, leading to a feeding ecology similar to that of the living Indian gharial, Gavialis. Here, we compare form and function of the skulls of the thalattosuchian Pelagosaurus and Gavialis using digital reconstructions of the skull musculoskeletal anatomy and finite element models to show that they had different jaw muscle arrangements and biomechanical behaviour. Additionally, the relevance of feeding‐related mandibular traits linked to longirostry in the radiation of crocodylomorph clades was investigated by conducting an evolutionary rates analysis under the variable rates model. We find that, even though Pelagosaurus and Gavialis share similar patterns of stress distribution in their skulls, the former had lower mechanical resistance. This suggests that compared to Gavialis, Pelagosaurus was unable to process large, mechanically less tractable prey, instead operating as a specialized piscivore that fed on softer and smaller prey. Secondly, innovation of feeding strategies was achieved by rate acceleration of functional characters of the mandible, a key mechanism for the diversification of certain clades like thalattosuchians and eusuchians. Different rates of functional evolution suggest divergent diversification dynamics between teleosaurids and metriorhynchids in the Jurassic. 相似文献
5.
JAVIER FRANCISCO-ORTEGA SEON-JOO PARK ARNOLDO SANTOS-GUERRA ABDELMALEK BENABID ROBERT K. JANSEN 《Biological journal of the Linnean Society. Linnean Society of London》2001,72(1):77-97
The tribe Inuleae (Asteraceae) has 10 species endemic to the Macaronesian islands, including the three endemic genera Allagopappus, Schizogyne, and Vierea. Phylogenetic analyses of DNA sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA of 47 taxa were performed using all Macaronesian endemics and representative species from 21 of the 36 genera of the Inuleae. The resulting ITS phylogeny reveals that Allagopappus is sister to a large clade that contains all genera with a predominantly Mediterranean distribution. This finding suggests that Allagopappus may represent an ancient lineage that found refuge in the Canary Islands following the major climatic and/or geologic changes in the Mediterranean basin after the Tertiary. The Macaronesian endemic genus Schizogyne is sister to Limbarda from the Mediterranean. The third Macaronesian endemic genus, Vierea, is sister to Perralderia, which is restricted to Morocco and Algeria. Pulicaria canariensis is sister to P. mauritanica, a species endemic to Morocco and Algeria. In contrast, P. diffusa from the Cape Verde Islands is sister to a broadly distributed species, P. crispa, that occurs from North Africa to the Arabian peninsula. Based on the ITS data, the genera Blumea, Inula, and Pulicaria are not monophyletic. The ITS trees suggested that Blumea mollis belongs to the tribe Plucheeae, a finding that is congruent with recent morphological evidence. A possible southern African origin for the core of the Laurasian taxa of the Inuleae is also suggested. 相似文献
6.
The sugar porter family in yeasts encompasses a wide variety of transporters including the hexose transporters and glucose sensors. We analysed a total of 75 members from both groups in nine hemiascomycetous species, with complete and well-annotated genomes: Saccharomyces cerevisiae, Candida glabrata, Zygosaccharomyces rouxii, Kluyveromyces thermotolerans, Saccharomyces kluyverii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii and Yarrowia lipolytica . We present a model for the evolution of the hexose transporters and glucose sensors, supported by two types of complementary evidences: phylogeny and neighbourhood analysis. Five lineages of evolution were identified and discussed according to different mechanisms of gene evolution: lineage A for HXT1, HXT3 , HXT4, HXT5 , HXT6 and HXT7 ; lineage B for HXT2 and HXT10 ; lineage C for HXT8 ; lineage D for HXT14 ; and lineage E for SNF3 and RGT2 . 相似文献
7.
8.
Hong Qian;Michael Kessler;Jian Zhang;Yi Jin;Meichen Jiang; 《Journal of Biogeography》2024,51(8):1429-1437
Globally, biodiversity is unevenly distributed, as a result of varying environmental conditions and regionally different historical processes. The influence of the latter on current diversity patterns is poorly understood. We explore geographic patterns of matches and mismatches between phylogenetic relatedness metrics measuring different depths of evolutionary history and investigate the effects of evolutionary legacy at different evolutionary depths on species density of ferns. 相似文献
9.
The evolution of ligand specificity underlies many important problems in biology, from the appearance of drug resistant pathogens to the re-engineering of substrate specificity in enzymes. In studying biomolecules, however, the contributions of macromolecular sequence to binding specificity can be obscured by other selection pressures critical to bioactivity. Evolution of ligand specificity in
vitro—unconstrained by confounding biological factors—is addressed here using variants of three flavin-binding RNA aptamers. Mutagenized pools based on the three aptamers were combined and allowed to compete during in
vitro selection for GMP-binding activity. The sequences of the resulting selection isolates were diverse, even though most were derived from the same flavin-binding parent. Individual GMP aptamers differed from the parental flavin aptamers by 7 to 26 mutations (20 to 57% overall change). Acquisition of GMP recognition coincided with the loss of FAD (flavin-adenine dinucleotide) recognition in all isolates, despite the absence of a counter-selection to remove FAD-binding RNAs. To examine more precisely the proximity of these two activities within a defined sequence space, the complete set of all intermediate sequences between an FAD-binding aptamer and a GMP-binding aptamer were synthesized and assayed for activity. For this set of sequences, we observe a portion of a neutral network for FAD-binding function separated from GMP-binding function by a distance of three mutations. Furthermore, enzymatic probing of these aptamers revealed gross structural remodeling of the RNA coincident with the switch in ligand recognition. The capacity for neutral drift along an FAD-binding network in such close approach to RNAs with GMP-binding activity illustrates the degree of phenotypic buffering available to a set of closely related RNA sequences—defined as the sets functional tolerance for point mutations—and supports neutral evolutionary theory by demonstrating the facility with which a new phenotype becomes accessible as that buffering threshold is crossed. 相似文献
10.
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets. 相似文献