首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
  国内免费   11篇
  2018年   3篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2007年   3篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   8篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   9篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1973年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
Water hyacinth productivity and detritus accumulation   总被引:2,自引:1,他引:1  
Water hyacinth [Eichhornia crassipes (Mart) Solms] productivity and detritus accumulation were evaluated in eutrophic lake water with and without added nutrients (fertilized and control reservoirs, respectively). Seasonal changes in plant productivity and detritus accumulation were determined at monthly intervals for one year. Significant differences were observed in plant productivity between seasons and nutrient additions. Seasonal plant productivity ranged from 1.9 to 23.1 mg (dry wt) ha−1 for the fertilized reservoir and −0.2 to 10.2 mg ha−1 for the control reservoir. Detritus accumulation was not significantly different between seasons or nutrient additions. Seasonal N assimilation by plants ranged from 34 to 242 kg N ha−1 for plants in the fertilized reservoir and < 0 to 104 kg N ha−1 for plants in the control reservoir. Annual net N recovered in detritus represented 21 and 28% of the total N removed by plants in the fertilized and control reservoirs, respectively. Net N loading to the reservoirs from detritus was 92 to 148 kg N ha−1 yr−1.  相似文献   
2.
The effect which Cyanophyta have upon the zooplankton varies according to the form of the alga (mucilaginous colonies or filaments) and its abundance. Periodical blooms of Microcystis aeruginosa were not detrimental for the zooplankton, in spite of the fact that copepods, cladocerans and rotifers consume small colonies. High concentrations of Lyngbya limnetica and Oscillatoria limnetica in Lake Valencia, Venezuela, proved to be inhibitory for cladocerans. A total absence of cladocerans was detected when filaments increased.  相似文献   
3.
The abundances, biomass, and seasonal succession of rotifer and crustacean zooplankton were examined in a man-made, eutrophic lake, Lake Oglethorpe, over a 13 month period. There was an inverse correlation between the abundance of rotifers and crustaceans. Rotifers were most abundant and dominated (>69%) the rotifer-crustacean biomass during summer months (June–September) while crustacean zooplankton dominated during the remainder of the year (>89%). Peak biomasses of crustaceans were observed in the fall (151 µg dry wt l–1 in October) and spring (89.66 µg dry wt l–1 in May). Mean annual biomass levels were 46.99 µg dry wt l–1 for crustaceans and 19.26 µg dry wt l–1 for rotifers. Trichocerca rousseleti, Polyarthra sp., Keratella cochlearis and Kellicottia bostoniensis were the most abundant rotifers in the lake. Diaptomus siciloides and Daphnia parvula were the most abundant crustaceans. Lake Oglethorpe is distinct in having an unusually high abundance of rotifers (range 217–7980 l–1). These high densities can be attributed not only to the eutrophic conditions of the lake but also to the detailed sampling methods employed in this study.The research was supported by National Science Foundation grants DEB 7725354 and DEB 8005582 to Dr. K. G. Porter. It is lake Oglethorpe Limnological Association Contribution No. 25 and Contribution No. 371 of the Harbor Branch Foundation, Inc.  相似文献   
4.
Three species ofDaphnia are recorded from natural lakes and reservoirs in Brazil:Daphnia gessneri, Herbst, 1967,Daphnia ambigua, Scourfield, 1947 andDaphnia laevis, Birge, 1878. Some comments on their geographical distribution and ecology are made, showing the trend of the presence of these species in eutrophicated environments.  相似文献   
5.
164 taxa were identified in the net zooplankton of the pelagial of L. Peipsi-Pihkva in 1909–1987, including 3 species of protozoans, 74 species of rotifers, 58 species of cladocerans, 28 species of copepods and 1 mollusc. One rotifer species, Ploesoma peipsiense Mäemets et Kutikova, has been described as new for science here. The zooplankton of L. Peipsi-Pihkva is remarkably rich in species including rarities in Estonia: Limnosida frontosa, Drepanothrix dentata, Bythotrephes longimanus, B. cederstroemi etc. Due to its large surface area, L. Peipsi-Pihkva provides a large scale of biotopes of a diverse trophic state and humic content, which support species with different ecological requirements. Most of the aquatory of the lake has lately been mesotrophic, favouring the coexistence of indicators of oligo- and mesotrophic state and species preferring a higher trophic state. The occurrece of 10 species of the genus Bosmina including B. berolinensis, B. gibbera, B. lilljeborgi, B. thersites and B. crassicornis, sparse in Estonian lakes, is the most noteworthy feature of the zooplankton of L. Peipsi-Pihkva. The coexistence of B. coregoni and B. berolinensis, B. gibbera, B. lilljeborgi etc. which were earlier regarded as subspecies of B. c. coregoni proves that they are different species producing usually no hybrids. The species composition was subjected to certain changes during the years under consideration. Larvae of Dreissena were first found in zooplankton in 1962. The oligo-mesotrophic indicator Holopedium gibberum occurred in the lake in 1909–1964, but was lacking in later samples.  相似文献   
6.
The late-spring quantitative relationship between epiphyton and macroinvertebrates was analyzed on the basis of units of colonizable plant surface of Typha angustifolia, Phragmites australis and Nuphar lutea (floating leaves) in the shallow euthrophic Lake Loosdrecht (the Netherlands), with a high seston load. The non-predatory chironomid larvae (Glyptotendipes viridis, Endochironomus albipennis, Pentapedilum sordens, Cricotopus sylvestris agg.) dominated among the macroinvertebrate taxa, controlling the diversity and resemblance of macroinvertebrate assemblages. There was a gradient in functional feeding groups among the chironomids from continuous filtering of the seston to prevailing utilization of epiphyton. We found no direct relationship between the total macroinvertebrate abundance and the epiphyton mass on the plants surface. We attribute this to the filter feeding-strategy of the most abundant species, Glyptotendipes viridis, that utilizes seston in the eutrophicated lake.  相似文献   
7.
Tiina Nõges 《Hydrobiologia》1996,338(1-3):91-103
The material for pigment analysis was collected 1–3 times a year from Lake Peipsi-Pihkva in 1983, 1987, 1988, 1991 and 1992–1995. Concentrations of chlorophyll a, b and c (Chla, Chlb, Chlc), pheopigment (Pheo) and adenosine triphosphate (ATP) were measured biweekly in 1985–1986. The mean of all Chla values was 20.2 mg m–1 (median 13.3 mg m–1) indicating the eutrophic state of the lake. Average Chlb, Chlc, Pheo and carotenoid (Car) contents were 3.7 mg m–3, 4.1 mg m–3, 3.0 mg m–3 and 4.8 mg m–3, respectively. The average Chlb/Chla ratio was 22.9%, Chlc/Chla 23.4%, Pheo/Chla 38%, Car/Chla 37% and ATP/Chla 3%, the medians being 14.3, 13.6, 17.5, 39.4 and 1.9%, respectively. The proportion of Chla in phytoplankton biomass was 0.41%, median 0.32%. There were no significant differences in temperature, oxygen concentration, Chla, and ATP between the surface and bottom water; the lake was polymictic during the vegetation period. The Chla concentration had its first peak in May followed by a decrease in June and July. In late summer Chla increased again achieving its seasonal maximum in late autumn. The ATP concentration was the highest during spring and early summer, decreasing drastically in autumn together with the decline of primary production. ATP/Chla was the highest during the clear water period in June and early July, which coincided also with the high proportion of Chla in phytoplankton biomass. The highest Chla occurred in November (average 37.2 mg m–3) when Secchi transparency was the lowest (1.05 m). Concentrations of Chlb, Chlc and carotenoids were the highest in August, that of Pheo in June. Concentrations of Chla and other pigments were the lowest in the northern part of Lake Peipsi (mean 14.7 mg m–3, median 12.5 mg m–3) and the highest in the southern part of Lake Pihkva (mean 47.9 mg m–3, median 16.3 mg m–3). An increase of Chla and decrease of Secchi depth could be noticed in 1983–1988, while in 1988–1994 the tendency was opposite.  相似文献   
8.
A mesocosm experiment was conducted to assess the impact of moderate silver carp (Hypophthalmichthys molitrix) biomass (41 g m–3 or 850 kg ha–1) on the plankton community and water quality of eutrophic Paranoá Reservoir (Brasília, Brazil). Microzooplankton (copepod nauplii and rotifers <200 m), netphytoplankton (> 20 m), total phytoplankton biomass (expressed as chlorophyll-a) and net primary productivity were significantly reduced by silver carp. Apart from increased nitrogen in the sediment, nutrients and chemical properties of the water were not affected by fish presence. The observed improvements in water quality suggest that stocking silver carp in Paranoá Reservoir to control blue-green algae is a promising biomanipulation practice.  相似文献   
9.
The distribution of dissolved DNA concentrations and some microbial variables were compared in an oligo-mesotrophic river (the Crystal River) and a phosphate-rich eutrophic river (the Alafia River) in Southwest Florida over a 15 month period. Concentrations of phosphate and nitrate in the Alafia River averaged 135 and 18.2 times the respective phosphate and nitrate concentrations of the oligo-mesotrophic Crystal River. The seasonal average dissolved DNA concentration for the Alafia River exceeded that of the Crystal River by a factor of 1.8 (8.2 g 1–1 compared to 4.6 g 1–1, respectively). The greatest concentrations of dissolved DNA in the Alafia River were found in areas that contained the largest populations of phytoplankton and bacteria (a reservoir formed from an abandoned phosphate mining pit and two downstream stations near the mouth of the river). Differences in dissolved DNA concentrations between these environments and more pristine environments (i.e. all Crystal River Stations and upstream Alafia River stations) were of the same order of magnitude (1.8 to 2.2-fold) as the differences in bacterial abundance and activity, but considerably less than differences in phytoplankton abundance and activity between such environments. Seasonal variations in dissolved DNA concentrations in the Crystal River corresponded to seasonal variations in microbial populations, with minimal values in January and greater values in July. In the Alafia River, lowest concentrations for dissolved DNA occurred in July during the wet season, when seasonal flooding of area of leaf litter yielded high levels of dissolved organic carbon (DOC) which were low in dissolved DNA. These results suggest that: 1) in situ planktonic activity is a greater source of dissolved DNA than allochthonous or terrestrial sources of DOC; 2) factors that control the magnitude of heterotrophic bacterial populations are more likely to control dissolved DNA levels than factors regulating autotrophic population activity and abundance; 3) differences in dissolved DNA between eutrophic and oligo-mesotrophic environments are often much smaller than the differences in nutrient concentration between such environments.  相似文献   
10.
Water quality and plankton periodicity was studied in two mine lakes near Jos in the younger granite area of Plateau State, Nigeria. The investigation was carried out for 8 months. Transparency, pH and NO3-N were significantly higher in Lake II while DOM, alkalinity, PO 4 3– -P, BOD and chloride were significantly higher in Lake I. The order of dominance in Lake I was Bacillariophyceae, Cyanophyceae, Chlorophyceae and Dinophyceae while for Lake II; Chlorophyceae, Cyanophyceae, Bacillariophyceae and Dinophyceae. In Lake I the zooplankton in order of dominance were Cladocera, Rotifera, Copepoda, and nauplii and in Lake II Cladocera, Copepoda, Rotifera and nauplii. Although both lakes would seem unproductive based on the PO 4 3– -P and NO 3 -N levels, Lake I appears more productive than Lake II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号