首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   5篇
  国内免费   5篇
  2023年   5篇
  2022年   2篇
  2021年   13篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   9篇
  2014年   4篇
  2013年   7篇
  2012年   10篇
  2011年   11篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   11篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1980年   1篇
排序方式: 共有151条查询结果,搜索用时 46 毫秒
1.
When retinal pigmented epithelial cells (PEC) of chick embryos are cultured under appropriate conditions, the phenotype changes to that of lens cells through a process known as transdifferentiation. The first half of the process, characterized by dedifferentiation of PEC, is accompanied by a marked decrease in adhesiveness of PEC to collagen type I- or type IV-coated dishes. To understand the underlying mechanisms of this change, we analyzed the expression of integrins, which are major receptors for extracellular matrix components. Northern blot analysis with cDNA probes for chicken α3, α6, α8, αv, β1 and β5 integrin mRNA showed that the genes for all these integrins are transcribed at similar levels in PEC and dedifferentiated PEC (dePEC). Further analysis of β1 integrin, which is a major component of integrin heterodimers, showed that although the protein amount of β1 integrin was not changed, its localization at focal contacts seen in PEC was lost in dePEC. When anti-β1 integrin antibody was added to the PEC culture medium, a decrease of cell-substrate adhesiveness occurred, followed by a gradual change in both morphology and gene expression patterns to ones similar to those of dePEC. These findings suggest that an appropriate distribution of β1 integrin plays an essential role in maintaining the differentiated state of PEC through cell-substrate adhesion.  相似文献   
2.
Evidence points to the indispensable function of alveolar macrophages (AMs) in normal lung development and tissue homeostasis. However, the importance of AMs in bronchopulmonary dysplasia (BPD) has not been elucidated. Here, we identified a significant role of abnormal AM proliferation and polarization in alveolar dysplasia during BPD, which is closely related to the activation of the IL-33-ST2 pathway. Compared with the control BPD group, AMs depletion partially abolished the epithelialmesenchymal transition process of AECII and alleviated pulmonary differentiation arrest. In addition, IL-33 or ST2 knockdown has protective effects against lung injury after hyperoxia, which is associated with reduced AM polarization and proliferation. The protective effect disappeared following reconstitution of AMs in injured IL-33 knockdown mice, and the differentiation of lung epithelium was blocked again. In conclusion, the IL-33-ST2 pathway regulates AECII transdifferentiation by targeting AMs proliferation and polarization in BPD, which shows a novel strategy for manipulating the IL-33–ST2-AMs axis for the diagnosis and intervention of BPD.  相似文献   
3.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   
4.
5.
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.  相似文献   
6.
Homozygotes of the quail silver mutation, which have plumage color changes, also display a unique phenotype in the eye: during early embryonic development, the retinal pigment epithelium (RPE) spontaneously transdifferentiates into neural retinal tissue. Mitf is considered to be the responsible gene and to function similarly to the mouse microphthalmia mutation, and tissue interaction between RPE and surrounding mesenchymal tissue in organ culture has been shown to be essential for the initiation of the transdifferentiation process in which fibroblast growth factor (FGF) signaling is involved. The immunohistochemical results of the present study show that laminin and heparan sulfate proteoglycan, both acting as cofactors for FGF binding, are localized in the area of transdifferentiation of silver embryos much more abundantly than in wild-type embryos. More intense immunohistochemical staining with FGF-1 antibody, but not with FGF-2 antibody, is also found in the neural retina, RPE, and choroidal tissue of silver embryos than in wild-type embryos. HNK-1 immunohistochemistry revealed that clusters of HNK-1-positive cells (presumptive migrating neural crest cells) are frequently located around the developing eyes and in the posterior region of the silver embryonic eye. Finally, chick-quail chimerical eyes were made by grafting silver quail optic vesicles to chicken host embryos: in most cases, no transdifferentiation occurs in the silver RPE, but in a few cases, transdifferentiation occurs where silver quail cells predominate in the choroid tissue. These observations together with our previous in vitro study indicate that the silver mutation affects not only RPE cells but also cephalic neural crest cells, which migrate to the eye rudiment, and that these crest cells play an essential role in the transdifferentiation of RPE, possibly by modifying the FGF signaling pathway. The precise molecular mechanism involved in RPE-neural crest cell interaction is still unknown, and the quail silver mutation is considered to be a good experimental model for studying the role of neural crest cells in vertebrate eye development.  相似文献   
7.
The neural retina and retinal pigment epithelium (RPE) diverge from the optic vesicle during early embryonic development. They originate from different portions of the optic vesicle, the more distal part developing as the neural retina and the proximal part as RPE. As the distal part appears to make contact with the epidermis and the proximal part faces mesenchymal tissues, these two portions would encounter different environmental signals. In the present study, an attempt has been made to investigate the significance of interactions between the RPE and mesenchymal tissues that derive from neural crest cells, using a unique quail mutant silver (B/B) as the experimental model. The silver mutation is considered to affect neural crest-derived tissues, including the epidermal melanocytes. The homozygotes of the silver mutation have abnormal eyes, with double neural retinal layers, as a result of aberrant differentation of RPE to form a new neural retina. Retinal pigment epithelium was removed from early embryonic eyes (before the process began) and cultured to see whether it expressed any phenotype characteristic of neural retinal cells. When RPE of the B/B mutant was cultured with surrounding mesenchymal tissue, neural retinal cells were differentiated that expressed markers of amacrine, cone or rod cells. When isolated RPE of the B/B mutant was cultured alone, it acquired pigmentation and did not show any property characteristic of neural retinal cells. The RPE of wild type quail always differentiated to pigment epithelial cells. In the presence of either acidic fibroblast growth factor (aFGF) or basic FGF (bFGF), the RPE of the B/B mutant differentiated to neural retinal cells in the absence of mesenchymal tissue, but the RPE of wild type embryos only did so in the presence of 10–40 times as much aFGF or bFGF. These observations indicate that genes responsible for the B/B mutation are expressed in the RPE as well as in those cells that have a role in the differentiation of neural crest cells. They further suggest that development of the neural retina and RPE is regulated by some soluble factor(s) that is derived from or localized in the surrounding embryonic mesenchyme and other ocular tissues, and that FGF may be among possible candidates.  相似文献   
8.
干细胞具有分化成为体内所有类型细胞的能力,因此,其在再生医学治疗、体外疾病模拟、药物筛选等方面具有广阔的应用前景。干细胞技术在近些年取得了突飞猛进的发展,特别是诱导多能性干细胞的出现使干细胞领域经历了一场巨大的变革。我国干细胞研究在这场干细胞技术变革中取得了多项重大成果,逐渐成为了世界干细胞研究领域中的重要力量。本综述着重介绍近几年来,主要是诱导多能性干细胞技术出现之后,我国在干细胞和再生医学领域取得的重要进展,主要涵盖诱导多能性干细胞、转分化、单倍体干细胞以及基因修饰动物模型和基因治疗等方面。  相似文献   
9.
10.
Small molecules have been playing important roles in elucidating basic biology and treatment of a vast number of diseases for nearly a century, making their use in the field of stem cell biology a comparatively recent phenomenon. Nonetheless, the power of biology-oriented chemical design and synthesis, coupled with significant advances in screening technology, has enabled the discovery of a growing number of small molecules that have improved our understanding of stem cell biology and allowed us to manipulate stem cells in unprecedented ways. This review focuses on recent small molecule studies of (i) the key pathways governing stem cell homeostasis, (ii) the pluripotent stem cell niche, (iii) the directed differentiation of stem cells, (iv) the biology of adult stem cells, and (v) somatic cell reprogramming. In a very short period of time, small molecules have defined a perhaps universally attainable naive ground state of pluripotency, and are facilitating the precise, rapid and efficient differentiation of stem cells into somatic cell populations relevant to the clinic. Finally, following the publication of numerous groundbreaking studies at a pace and consistency unusual for a young field, we are closer than ever to completely eliminating the need for genetic modification in reprogramming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号