首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1989年   1篇
  1985年   2篇
  1981年   1篇
  1973年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   
2.
M. Node  M. Sai  E. Fujita 《Phytochemistry》1981,20(4):757-760
The diterpenoid teuflin (6-epiteuevin) has been isolated from Teucrium viscidum var. miquelianum. Its base catalysed epimerization into teucvidin was studied under mild conditions and the pathway is discussed.  相似文献   
3.
The importance of dipeptides both in medicinal and pharmacological fields is well documented and many efforts have been made to find simple and efficient methods for their synthesis. For this reason, we have investigated the synthesis of α‐N‐protected dipeptide acids by reacting the easily accessible mixed anhydride of α‐N‐protected amino acids with free amino acids under different reaction conditions. The combination of TBA‐OH and DMSO has been found to be the best to overcome the low solubility of amino acids in organic solvents. Under these experimental conditions, the homogeneous phase condensation reaction occurs rapidly and without detectable epimerization. The present method is also applicable to side‐chain unprotected Tyr, Trp, Glu, and Asp but not Lys. This latter residue is able to engage two molecules of mixed anhydride giving the corresponding isotripeptide. Moreover, the applicability of this protocol for the synthesis of tri‐ and tetrapeptides has been tested. This approach reduces the need for protecting groups, is cost effective, scalable, and yields dipeptide acids that can be used as building blocks in the synthesis of larger peptides. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
4.
Several H2-producing fermentative anaerobic bacteria including Clostridium, Klebsiella and Fusobacteria degraded octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (36 microM) to formaldehyde (HCHO) and nitrous oxide (N2O) with rates ranging from 5 to 190 nmol h(-1)g [dry weight] of cells(-1). Among these strains, C. bifermentans strain HAW-1 grew and transformed HMX rapidly with the detection of the two key intermediates the mononitroso product and methylenedinitramine. Its cellular extract alone did not seem to degrade HMX appreciably, but degraded much faster in the presence of H2, NADH or NADPH. The disappearance of HMX was concurrent with the release of nitrite without the formation of the nitroso derivative(s). Results suggest that two types of enzymes were involved in HMX metabolism: one for denitration and the second for reduction to the nitroso derivative(s).  相似文献   
5.
6.
Segment condensation reaction of sparingly soluble protected peptides proceeded smoothly in CHCl3-phenol mixed solvent without danger of epimerization or of significant ester formationwith the carboxyl component when 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) was employedin the presence of 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine(HOOBt). The optimal conditions for enhancement of peptide coupling mediated by EDC/HOOBt in CHCl3-phenol were determined and successfully applied to the synthesis of amyloid -peptide (1-42), (1-43) and [Pyr3]-(3-42). These peptides of high homogeneity were used to examine the relation between structure and amyloidogenesis by means of CD spectra andfluorimetric assay.  相似文献   
7.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) not only catalyzes carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), but it can also act either as an epimerase or isomerase converting RuBP into xylulose-1,5-bisphosphate (XuBP) or 3-ketoarabinitol-1,5-bisphosphate (KABP), respectively, a process called misfire. XuBP is formed as a result of misprotonation at C3 of the RuBP-enediol. It is released from Rubisco active sites and accumulates in the reaction mixture. Increasing the amounts of CO2 or O2 decreases XuBP production. However, KABP synthesis, which has been proposed to be only a product due to C2 misprotonation of the RuBP-endiol, is dependent upon the presence of O2. KABP remains tightly bound to Rubisco active sites after its formation, causing the loss of Rubisco activity (fallover). The results suggest that the non-stabilized form of the peroxy-intermediate in the oxygenase reaction can be converted in a backreaction to KABP and molecular oxygen. The stabilization of the peroxy-intermediate due to the presence of Mn2+ instead of Mg2+ eliminates the formation of KABP.  相似文献   
8.
Quantitative estimates of time-averaging (age mixing) in gastropod shell accumulations from Quaternary (the late Pleistocene and Holocene) eolian deposits of Canary Islands were obtained by direct dating of individual gastropods obtained from exceptionally well-preserved dune and paleosol shell assemblages. A total of 203 shells of the gastropods Theba geminata and T. arinagae, representing 44 samples (= stratigraphic horizons) from 14 sections, were dated using amino acid (isoleucine) epimerization ratios calibrated with 12 radiocarbon dates. Most samples reveal a substantial variation in shell age that exceeds the error that could be generated by dating imprecision, with the mean within-sample shell age range of 6670 years and the mean standard deviation of 2920 years. Even the most conservative approach (Monte Carlo simulations with a non-sequential Bonferroni correction) indicates that at least 25% of samples must have undergone substantial time-averaging (e.g., age variations within those samples cannot be explained by dating imprecision alone). Samples vary in shell age structure, including both left-skewed (17 out of 44) and right-skewed distributions (26 out of 44) as well as age distributions with a highly variable kurtosis. Dispersion and shape of age distributions of samples do not show any notable correlation with the stratigraphic age of samples, suggesting that the structure and scale of temporal mixing is time invariant. The statistically significant multi-millennial time-averaging observed here is consistent with previous studies of shell accumulations from various depositional settings and reinforces the importance of dating numerous specimens per horizon in geochronological studies. Unlike in the case of marine samples, typified by right-skewed age distributions (attributed to an exponential-like shell loss from older age classes), many of the samples analyzed here displayed left-skewed distributions, suggestive of different dynamics of age mixing in marine versus terrestrial shell accumulations.  相似文献   
9.
The protozoan parasite Giardia intestinalis has a simple life cycle consisting of an intestinal trophozoite stage and an environmentally resistant cyst stage. The cyst is formed when a trophozoite encases itself within an external filamentous covering, the cyst wall, which is crucial to the cyst's survival outside of the host. The filaments in the cyst wall consist mainly of a beta (1-3) polymer of N-acetylgalactosamine. Its precursor, UDP-N-acetylgalactosamine, is synthesized from fructose 6-phosphate by a pathway of five inducible enzymes. The fifth, UDP-N-acetylglucosamine 4'-epimerase, epimerizes UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine reversibly. The epimerase of G. intestinalis lacks UDP-glucose/UDP-galactose 4'-epimerase activity and shows characteristic amino acyl residues to allow binding of only the larger UDP-N-acetylhexosamines. While the Giardia epimerase catalyzes the reversible epimerization of UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine, the reverse reaction apparently is favored. The enzyme has a higher Vmax and a smaller Km in this direction. Therefore, an excess of UDP-N-acetylglucosamine is required to drive the reaction towards the synthesis of UDP-N-acetylgalactosamine, when it is needed for cyst wall formation. This forms the ultimate regulatory step in cyst wall biosynthesis.  相似文献   
10.
It is now well established that 1alpha,25(OH)2D3 is metabolized in its target tissues through the modifications of both side chain and A-ring. The C-24 oxidation pathway is the side chain modification pathway through which 1alpha,25(OH)2D3 is metabolized into calcitroic acid. The C-3 epimerization pathway is the A-ring modification pathway through which 1alpha,25(OH)2D3 is metabolized into 1alpha,25(OH)2-3-epi-D3. During the past two decades, a great number of vitamin D analogs were synthesized by altering the structure of both side chain and A-ring of 1alpha,25(OH)2D3 with the aim to generate novel vitamin D compounds that inhibit proliferation and induce differentiation of various types of normal and cancer cells without causing significant hypercalcemia. Previously, we used some of these analogs as molecular probes to examine how changes in 1alpha,25(OH)2D3 structure would affect its target tissue metabolism. Recently, several nonsteroidal analogs of 1alpha,25(OH)2D3 with unique biological activity profiles were synthesized. Two of the analogs, SL 117 and WU 515 lack the C-ring of the CD-ring skeleton of 1alpha,25(OH)2D3. SL 117 contains the same side chain as that of 1alpha,25(OH)2D3, while WU 515 contains an altered side chain with a 23-yne modification combined with hexafluorination at C-26 and C-27. Presently, it is unknown how the removal of C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 would affect its target tissue metabolism. In the present study, we compared the metabolic fate of SL 117 and WU 515 with that of 1alpha,25(OH)2D3 in both the isolated perfused rat kidney, which expresses only the C-24 oxidation pathway and rat osteosarcoma cells (UMR 106), which express both the C-24 oxidation and C-3 epimerization pathways. The results of our present study indicate that SL 117 is metabolized like 1alpha,25(OH)2D3, into polar metabolites via the C-24 oxidation pathway in both rat kidney and UMR 106 cells. As expected, WU 515 with altered side chain structure is not metabolized via the C-24 oxidation pathway. Unlike in rat kidney, both SL 117 and WU 515 are also metabolized into less polar metabolites in UMR 106 cells. These metabolites displayed GC and MS characteristics consistent with A-ring epimerization and were putatively assigned as C-3 epimers of SL 117 and WU 515. In summary, we report that removal of the C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 does not alter its target tissue metabolism significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号