首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6416篇
  免费   907篇
  国内免费   1102篇
  2024年   33篇
  2023年   203篇
  2022年   194篇
  2021年   316篇
  2020年   445篇
  2019年   442篇
  2018年   371篇
  2017年   395篇
  2016年   371篇
  2015年   351篇
  2014年   376篇
  2013年   442篇
  2012年   303篇
  2011年   295篇
  2010年   275篇
  2009年   321篇
  2008年   288篇
  2007年   343篇
  2006年   307篇
  2005年   262篇
  2004年   207篇
  2003年   208篇
  2002年   190篇
  2001年   163篇
  2000年   145篇
  1999年   134篇
  1998年   119篇
  1997年   108篇
  1996年   77篇
  1995年   97篇
  1994年   70篇
  1993年   72篇
  1992年   61篇
  1991年   52篇
  1990年   48篇
  1989年   36篇
  1988年   34篇
  1987年   33篇
  1986年   20篇
  1985年   28篇
  1984年   34篇
  1983年   13篇
  1982年   30篇
  1981年   20篇
  1980年   17篇
  1979年   12篇
  1978年   14篇
  1976年   17篇
  1975年   10篇
  1973年   7篇
排序方式: 共有8425条查询结果,搜索用时 15 毫秒
1.
  1. Food ingestion is one of the most basic features of all organisms. However, obtaining precise—and high‐throughput—estimates of feeding rates remains challenging, particularly for small, aquatic herbivores such as zooplankton, snails, and tadpoles. These animals typically consume low volumes of food that are time‐consuming to accurately measure.
  2. We extend a standard high‐throughput fluorometry technique, which uses a microplate reader and 96‐well plates, as a practical tool for studies in ecology, evolution, and disease biology. We outline technical and methodological details to optimize quantification of individual feeding rates, improve accuracy, and minimize sampling error.
  3. This high‐throughput assay offers several advantages over previous methods, including i) substantially reduced time allotments per sample to facilitate larger, more efficient experiments; ii) technical replicates; and iii) conversion of in vivo measurements to units (mL‐1 hr‐1 ind‐1) which enables broad‐scale comparisons across an array of taxa and studies.
  4. To evaluate the accuracy and feasibility of our approach, we use the zooplankton, Daphnia dentifera, as a case study. Our results indicate that this procedure accurately quantifies feeding rates and highlights differences among seven genotypes.
  5. The method detailed here has broad applicability to a diverse array of aquatic taxa, their resources, environmental contaminants (e.g., plastics), and infectious agents. We discuss simple extensions to quantify epidemiologically relevant traits, such as pathogen exposure and transmission rates, for infectious agents with oral or trophic transmission.
  相似文献   
2.
3.
Wang  R.Z. 《Photosynthetica》2001,39(4):569-573
The differences in net photosynthetic rate (P N), transpiration rate (E), and water use efficiency (WUE) between the vegetative and reproductive shoots of three native grass species from the grassland of northeastern China [grey-green and yellow green populations of Leymus chinensis (Trin.) Tzvel., Puccinellia tenuiflora (Griseb) Scrib & Merr, Puccinellia chinampoensis Ohwi] were compared. The two type shoots experienced similar habitats, but differed in leaf life-span and leaf area. The leaf P N and WUE for the vegetative shoots were significantly higher than those for the reproductive shoots in the grasses, while their E were remarked lower in the dry season. Relative lower leaf P N and WUE for the reproductive shoots of grassland grasses may explain the facts of lower seed production and the subordinate role of seed in the grassland renewal in north-eastern China.  相似文献   
4.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   
5.
Candida auris is an emerging species responsible for life-threatening infections. Its ability to be resistant to most systemic antifungal classes and its capacity to persist in a hospital environment have led to health concerns. Currently, data about environmental reservoirs are limited but remain essential in control of C. auris spread. The aim of our study was to explore the interactions between C. auris and two free-living amoeba (FLA) species, Vermamoeba vermiformis and Acanthamoeba castellanii, potentially found in the same water environment. Candida auris was incubated with FLA trophozoites or their culture supernatants. The number of FLA and yeasts was determined at different times and transmission electron microscopy (TEM) was performed. Supernatants of FLAs promoted yeast survival and proliferation. Internalization of viable C. auris within both FLA species was also evidenced by TEM. A water environmental reservoir of C. auris can therefore be considered through FLAs and contamination of the hospital water networks would consequently be possible.  相似文献   
6.
Improving our knowledge of the links between ecology and evolution is especially critical in the actual context of global rapid environmental changes. A critical step in that direction is to quantify how variation in ecological factors linked to habitat modifications might shape observed levels of genetic variability in wild populations. Still, little is known on the factors affecting levels and distribution of genetic diversity at the individual level, despite its vital underlying role in evolutionary processes. In this study, we assessed the effects of habitat quality on population structure and individual genetic diversity of tree swallows (Tachycineta bicolor) breeding along a gradient of agricultural intensification in southern Québec, Canada. Using a landscape genetics approach, we found that individual genetic diversity was greater in poorer quality habitats. This counter-intuitive result was partly explained by the settlement patterns of tree swallows across the landscape. Individuals of higher genetic diversity arrived earlier on their breeding grounds and settled in the first available habitats, which correspond to intensive cultures. Our results highlight the importance of investigating the effects of environmental variability on individual genetic diversity, and of integrating information on landscape structure when conducting such studies.  相似文献   
7.
A number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently, a common approach is to perform separate analyses on subsets of sequences and compare parameter estimates in a post hoc fashion. This approach is statistically suboptimal and not always applicable. Here, we develop a simple extension of a popular fixed effects likelihood method in the context of codon-based evolutionary phylogenetic maximum likelihood testing, Contrast-FEL. It is suitable for identifying individual alignment sites where any among the K2 sets of branches in a phylogenetic tree have detectably different ω ratios, indicative of different selective regimes. Using extensive simulations, we show that Contrast-FEL delivers good power, exceeding 90% for sufficiently large differences, while maintaining tight control over false positive rates, when the model is correctly specified. We conclude by applying Contrast-FEL to data from five previously published studies spanning a diverse range of organisms and focusing on different evolutionary questions.  相似文献   
8.
We studied whether the time-varying forces that control unstable foot–ground interactions provide insight into the neural control of dynamic leg function. Twenty elite (10 F, 26.4 ± 3.5 yrs) and 20 recreational (10 F, 24.8 ± 2.4 yrs) athletes used an isolated leg to maximally compress a slender spring designed to buckle at low forces while seated. The foot forces during the compression at the edge of instability quantify the maximal sensorimotor ability to control dynamic foot–ground interactions. Using the nonlinear analysis technique of attractor reconstruction, we characterized the spatial (interquartile range IQR) and geometric (trajectory length TL, volume V, and sum of edge lengths SE) features of the dynamical behavior of those force time series. ANOVA confirmed the already published effect of sex, and a new effect of athletic ability, respectively, in TL (p = 0.014 and p < 0.001), IQR (p = 0.008 and p < 0.001), V (p = 0.034 and p = 0.002), and SE (p = 0.033 and p < 0.001). Further analysis revealed that, for recreational athletes, females exhibited weaker corrective actions and greater stochasticity than males as per their greater mean values of TL (p = 0.003), IQR (p = 0.018), V (p = 0.017), and SE (p = 0.025). Importantly, sex differences disappeared in elite athletes. These results provide an empirical link between sex, athletic ability, and nonlinear dynamical control. This is a first step in understanding the sensorimotor mechanisms for control of unstable foot–ground interactions. Given that females suffer a greater incidence of non-contact knee ligament injuries, these non-invasive and practical metrics of leg dexterity may be both indicators of athletic ability, and predictors of risk of injury.  相似文献   
9.
Frequent independent origins of environmental sex determination (ESD) are assumed within amniotes. However, the phylogenetic distribution of sex-determining modes suggests that ESD is likely very ancient and may be homologous across ESD groups. Sex chromosomes are demonstrated to be old and stable in endothermic (mammals and birds) and many ectothermic (non-avian reptiles) lineages, but they are mostly non-homologous between individual amniote lineages. The phylogenetic pattern may be explained by ancestral ESD with multiple transitions to later evolutionary stable genotypic sex determination. It is pointed out here that amniote ESD shares several key aspects with sequential hermaphroditism of fishes such as a lack of sex differences in genomes, biased population sex ratios, and potentially also molecular mechanism related to general stress responses. Here, it is speculated that ESD evolves via a heterochronic shift of the sensitive period of sex change from the adult to the embryonic stage in a hermaphroditic amniote ancestor. Also see the video abstract here https://youtu.be/q2mjtlCefu4 .  相似文献   
10.
Despite the growth in awareness and practical action to maintain biodiversity, environmental degradation and ecosystem destruction has continued at a high rate over the last 20 years. The roots of this lie in the predominant international economic order, underpinned by lifestyle demands for increased material consumption. Net flow of wealth from South (less developed) to North (more developed) nations has exacerbated a spiral of increased poverty and environmental degradation in the former. Global environmental conservation depends upon a radical change of direction with the principle of equity as the starting point. Notwithstanding the importance of continuing to add to local and small-scale conservation achievements, the prospect of radical change happening seems small, despite it being in the long-term self-interest of the North. The concept of equity is, apparently, unacceptable to Northern electorates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号