首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2015年   1篇
  2010年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The micropore structure is prerequisite for fast and durable endothelialization of artificial small diameter blood vessels (ASDBVs). Although some methods, such as salt leaching, coagulation, and electrospinning, have been developed to construct micropores for ASDBVs, the uncontrollability of the structure and the complicated procedures of the process are still the issues to be concerned about. In this study, a compact device based on the principle of centrifugal force is established and used to prepare polyurethane (PU) ASDBVs with micropore structures by blasting different porogens. It is found that the glass beads could construct micropores with regular round shape, uniform distribution, and controllable size (60–350 µm), which significantly improves the endothelialization of PU‐based ASDBVs, especially when the pore size is about 60 µm. This method is easy‐accessible and wide‐applicable, which provides a new pathway for the research and development of ASDBVs.  相似文献   
2.
Acute respiratory distress syndrome (ARDS) affects nearly 150,000 patients per year in the US, and is associated with high mortality (≈40%) and suboptimal options for patient care. Mechanical ventilation and extracorporeal membrane oxygenation are limited to short‐term use due to ventilator‐induced lung injury and poor biocompatibility, respectively. In this report, we describe the development of a biohybrid lung prototype, employing a rotating endothelialized microporous hollow fiber (MHF) bundle to improve blood biocompatibility while MHF mixing could contribute to gas transfer efficiency. MHFs were surface modified with radio frequency glow discharge (RFGD) and protein adsorption to promote endothelial cell (EC) attachment and growth. The MHF bundles were placed in the biohybrid lung prototype and rotated up to 1,500 revolutions per minute (rpm) using speed ramping protocols to condition ECs to remain adherent on the fibers. Oxygen transfer, thrombotic deposition, and EC p‐selectin expression were evaluated as indicators of biohybrid lung functionality and biocompatibility. A fixed aliquot of blood in contact with MHF bundles rotated at either 250 or 750 rpm reached saturating pO2 levels more quickly with increased rpm, supporting the concept that fiber rotation would positively contribute to oxygen transfer. The presence of ECs had no effect on the rate of oxygen transfer at lower fiber rpm, but did provide some resistance with increased rpm when the overall rate of mass transfer was higher due to active mixing. RFGD followed by fibronectin adsorption on MHFs facilitated near confluent EC coverage with minimal p‐selectin expression under both normoxic and hyperoxic conditions. Indeed, even subconfluent EC coverage on MHFs significantly reduced thrombotic deposition adding further support that endothelialization enhances, blood biocompatibility. Overall these findings demonstrate a proof‐of‐concept that a rotating endothelialized MHF bundle enhances gas transfer and biocompatibility, potentially producing safer, more efficient artificial lungs. Biotechnol. Bioeng. 2010; 106: 490–500. © 2010 Wiley Periodicals, Inc.  相似文献   
3.
4.
冯苏  陈志鹏  刘澄  乔彤 《生物工程学报》2019,35(9):1750-1760
由于自体血管(由同一受体的血管用于血管移植材料)的有限可用性,以及非自体血管(人工制成的血管移植材料)的生长能力不足,组织工程血管越来越受到重视。文中构建了一种磷铵两性离子改性的血管脱细胞支架附以高度生物相容的骨髓源内皮祖细胞为内层的新型血管移植材料。通过一种简便的方法——共沉淀法改性血管脱细胞支架,评价其体外血小板粘附实验、溶血实验、复钙实验和细胞毒性等相关指标。磷铵两性离子改性后抗凝血活性提高,可以有效地促使类似于天然血管腔表面凹凸结构的脱细胞支架表面内皮祖细胞的附着。改性后的脱细胞支架具有与天然血管相似的力学性能,在体外可以有效地构建内皮化。研究结果为血管脱细胞支架通过改性实现体外抗血栓和内皮化方面进行了初步探索。  相似文献   
5.
血管内支架和支架内皮化   总被引:7,自引:0,他引:7  
简要介绍了血管内支架产生的背景、发展进程及其应用于临床后出现的再狭窄问题,着重综述了十几年来内皮细胞种植血管内支架预防术后再狭窄的相关研究成果。血管内支架内皮化的最终实现可以使现行的血管支架具有正常血管内皮的生物相容性及生理功能,是控制支架植入术后再狭窄问题的很有前途的支架改进方法。  相似文献   
6.
Coronary artery stenting following balloon angioplasty represents the gold standard in revascularization of coronary artery stenoses. However, stent deployment as well as percutaneous transluminal coronary angioplasty (PTCA) alone causes severe injury of vascular endothelium. The damaged endothelium is intrinsically repaired by locally derived endothelial cells and by circulating endothelial progenitor cells from the blood, leading to re‐population of the denuded regions within several weeks to months. However, the process of re‐endothelialization is often incomplete or dysfunctional, promoting in‐stent thrombosis and restenosis. The molecular and biomechanical mechanisms that influence the process of re‐endothelialization in stented segments are incompletely understood. Once the endothelium is restored, endothelial function might still be impaired. Several strategies have been followed to improve endothelial function after coronary stenting. In this review, the effects of stenting on coronary endothelium are outlined and current and future strategies to improve endothelial function after stent deployment are discussed.  相似文献   
7.
Rapid endothelialization of cardiovascular stents is needed to reduce stent thrombosis and to avoid anti-platelet therapy which can reduce bleeding risk. The feasibility of using magnetic forces to capture and retain endothelial outgrowth cells (EOC) labeled with super paramagnetic iron oxide nanoparticles (SPION) has been shown previously. But this technique requires the development of a mechanically functional stent from a magnetic and biocompatible material followed by in-vitro and in-vivo testing to prove rapid endothelialization. We developed a weakly ferromagnetic stent from 2205 duplex stainless steel using computer aided design (CAD) and its design was further refined using finite element analysis (FEA). The final design of the stent exhibited a principal strain below the fracture limit of the material during mechanical crimping and expansion. One hundred stents were manufactured and a subset of them was used for mechanical testing, retained magnetic field measurements, in-vitro cell capture studies, and in-vivo implantation studies. Ten stents were tested for deployment to verify if they sustained crimping and expansion cycle without failure. Another 10 stents were magnetized using a strong neodymium magnet and their retained magnetic field was measured. The stents showed that the retained magnetism was sufficient to capture SPION-labeled EOC in our in-vitro studies. SPION-labeled EOC capture and retention was verified in large animal models by implanting 1 magnetized stent and 1 non-magnetized control stent in each of 4 pigs. The stented arteries were explanted after 7 days and analyzed histologically. The weakly magnetic stents developed in this study were capable of attracting and retaining SPION-labeled endothelial cells which can promote rapid healing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号