首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   5篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1981年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
2.
Studies have shown that after controlling for the effects of body size on brain size, the brains of adult humans, rhesus monkeys, and chimpanzees differ in relative size, where males have a greater volume of cerebral tissue than females. We assess whether head circumference sexual dimorphism is present during early development by evaluating sex differences in relative head circumference in living fetuses and infants within the first year of life. Head circumference is used as a proxy for brain size in the fetus and infant. Femur length is used as a proxy for body length in the fetus. Ultrasonography was used to obtain fetal measures, and anthropometry was used to obtain postnatal measures in humans, rhesus monkeys, baboons, and common marmosets. We show that statistically significant but low levels of head circumference sexual dimorphism are present in humans, rhesus monkeys, and baboons in early life. On average, males have head circumferences about 2% larger than females of comparable femur/body length in humans, rhesus monkeys, and baboons. No evidence for head circumference sexual dimorphism in the common marmoset was found. Dimorphism was present across all body size ranges. We suggest that head circumference sexual dimorphism emerges largely postnatally and increases throughout maturation, particularly in humans who reach adult dimorphism values greater than the monkeys. We suggest that brain dimorphism is not likely to impose an additional energetic burden to the gestating or lactating mother. Finally, some of the problems with ascribing functional significance to brain size sexual dimorphism are discussed, and the energetic implications for brain size sexual dimorphism in infancy are assessed.  相似文献   
3.
A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.  相似文献   
4.
The 'expensive-tissue hypothesis' states that investment in one metabolically costly tissue necessitates decreased investment in other tissues and has been one of the keystone concepts used in studying the evolution of metabolically expensive tissues. The trade-offs expected under this hypothesis have been investigated in comparative studies in a number of clades, yet support for the hypothesis is mixed. Nevertheless, the expensive-tissue hypothesis has been used to explain everything from the evolution of the human brain to patterns of reproductive investment in bats. The ambiguous support for the hypothesis may be due to interspecific differences in selection, which could lead to spurious results both positive and negative. To control for this, we conduct a study of trade-offs within a single species, Thalassoma bifasciatum, a coral reef fish that exhibits more intraspecific variation in a single tissue (testes) than is seen across many of the clades previously analysed in studies of tissue investment. This constitutes a robust test of the constraints posited under the expensive-tissue hypothesis that is not affected by many of the factors that may confound interspecific studies. However, we find no evidence of trade-offs between investment in testes and investment in liver or brain, which are typically considered to be metabolically expensive. Our results demonstrate that the frequent rejection of the expensive-tissue hypothesis may not be an artefact of interspecific differences in selection and suggests that organisms may be capable of compensating for substantial changes in tissue investment without sacrificing mass in other expensive tissues.  相似文献   
5.
Brain growth is a key trait in the evolution of mammalian life history. Brain development should be mediated by placentation, which determines patterns of resource transfer from mothers to fetal offspring. Eutherian placentation varies in the extent to which a maternal barrier separates fetal tissues from maternal blood. We demonstrate here that more invasive forms of placentation are associated with substantially steeper brain-body allometry, faster prenatal brain growth and slower prenatal body growth. On the basis of the physiological literature we suggest a simple mechanism for these differences: in species with invasive placentation, where the placenta is bathed directly in maternal blood, fatty acids essential for brain development can be readily extracted by the fetus, but in species with less invasive placentation they must be synthesized by the fetus. Hence, with regard to brain-body allometry and prenatal growth patterns, eutherian mammals are structured into distinct groups differing in placental invasiveness.  相似文献   
6.
《Journal of morphology》2017,278(8):1033-1057
The special sensory, motor, and cognitive capabilities of mammals mainly depend upon the neocortex, which is the six‐layered cover of the mammalian forebrain. The origin of the neocortex is still controversial and the current view is that larger brains with neocortex first evolved in late Triassic Mammaliaformes. Here, we report the earliest evidence of a structure analogous to the mammalian neocortex in a forerunner of mammals, the fossorial anomodont Kawingasaurus fossilis from the late Permian of Tanzania. The endocranial cavity of Kawingasaurus is almost completely ossified, which allowed a less hypothetical virtual reconstruction of the brain endocast to be generated. A parietal foramen is absent. A small pit between the cerebral hemispheres is interpreted as a pineal body. The inflated cerebral hemispheres are demarcated from each other by a median sulcus and by a possible rhinal fissure from the rest of the endocast. The encephalization quotient estimated by using the method of Eisenberg is 0.52, which is 2–3 times larger than in other nonmammalian synapsids. Another remarkable feature are the extremely ramified infraorbital canals in the snout. The shape of the brain endocast, the extremely ramified maxillary canals as well as the small frontally placed eyes suggest that special sensory adaptations to the subterranean habitat such as a well developed sense of touch and binocular vision may have driven the parallel evolution of an equivalent of the mammalian neocortex and a mammal‐like lemnothalamic visual system in Kawingasaurus . The gross anatomy of the brain endocast of Kawingasaurus supports the Outgroup Hypothesis, according to which the neocortex evolved from the dorsal pallium of an amphibian‐like ancestor, which receives sensory projections from the lemnothalamic pathway. The enlarged brain as well as the absence of a parietal foramen may be an indication for a higher metabolic rate of Kawingasaurus compared to other nonmammalian synapsids.  相似文献   
7.
Fundamental ambiguities in the interpretation of brain/body allometric trends can only be resolved by analyzing relationships between ontogenetic brain/body growth processes in different groups. The ambiguous concept of adult encephalization confuses at least three distinct types of transformation of a common mammalian growth curve: scalar magnification, total curve didplacement, and changes in proportions of the pre- and postnatal phases of the curve. The conservative ratio between pre- and postnatal growth phases determines the apparent linearity of comparative brain/body allometry and can be explained by assuming that embyological neurogenetic processes ultimately determine both target brain and body size—the first directly and the second indirectly via neurohormonal regulation of somatic growth. Uneven taxonomic distribution of different ontogenetic growth patterns may explain many differences in the allometric trends at different taxonomic levels of analysis. The human brain grows exactly as if it was in a giant ape body; however, because of decoupled growth in different brain regions, it regulates body growth as though it were the size of a chimpanzee brain. Human encephalization exhibits an ontogenetic transformation not found in other mammalian groups.  相似文献   
8.
There is a well-established allometric relationship between brain and body mass in mammals. Deviation of relatively increased brain size from this pattern appears to coincide with enhanced cognitive abilities. To examine whether there is a phylogenetic structure to such episodes of changes in encephalization across mammals, we used phylogenetic techniques to analyse brain mass, body mass and encephalization quotient (EQ) among 630 extant mammalian species. Among all mammals, anthropoid primates and odontocete cetaceans have significantly greater variance in EQ, suggesting that evolutionary constraints that result in a strict correlation between brain and body mass have independently become relaxed. Moreover, ancestral state reconstructions of absolute brain mass, body mass and EQ revealed patterns of increase and decrease in EQ within anthropoid primates and cetaceans. We propose both neutral drift and selective factors may have played a role in the evolution of brain-body allometry.  相似文献   
9.
A negative allometric relationship between body mass (BM) and brain size (BS) can be observed for many vertebrate groups. In the past decades, researchers have proposed several hypotheses to explain this finding, but none is definitive and some are possibly not mutually exclusive. Certain species diverge markedly (positively or negatively) from the mean of the ratio BM/BS expected for a particular taxonomic group. It is possible to define encephalization quotient (EQ) as the ratio between the actual BS and the expected brain size. Several cetacean species show higher EQs compared to all primates, except modern humans. The process that led to big brains in primates and cetaceans produced different trajectories, as shown by the organizational differences observed in every encephalic district (e.g., the cortex). However, these two groups both convergently developed complex cognitive abilities. The comparative study on the trajectories through which the encephalization process has independently evolved in primates and cetaceans allows a critical appraisal of the causes, the time and the mode of quantitative and qualitative development of the brain in our species and in the hominid evolutionary lineage.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号