首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   10篇
  国内免费   7篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   8篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   7篇
  2014年   4篇
  2013年   7篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   9篇
  2007年   5篇
  2006年   6篇
  2005年   11篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
2.
Phragmites australis (Common reed) occurs in the interface between water and land. The water depth gradient from deep water to dry land is inversely related to litter accumulation. Eutrophication can result in an excessive production of litter, which may have a large impact on the occurrence of P. australis in this gradient. In an outdoor pot experiment, it was investigated how water tables in combination with substrates containing variable amounts of litter affect morphology and productivity of P. australis. Vegetatively propagated P. australis was grown in pots filled with river sand, litter, and different mixtures of sand and litter (25, 50 and 75% by volume). Four water table treatments were applied; drained (–12 cm), waterlogged (0 cm), flooded (+12 cm), and weekly fluctuating drained and flooded conditions (–12/+12 cm of water relative to substrate level). When drained, no differences between substrate treatments were present. Waterlogging, flooding fluctuating water table treatments caused growth reduction in substrate containing litter. The plants formed short shoots and thin rhizomes. With increasing water table, allocation of dry matter to stems increased at the expense of leaves and rhizomes. At intermediate levels of litter in the substrate, allocation to leaves was lowest. In both instances a lower leaf weight ratio (LWR) was (partly) compensated for by a higher specific leaf area (SLA), resulting in less pronounced differences in leaf area ratio (LAR). Aquatic roots developed when plants were waterlogged or flooded, and increased when litter was present in the substrate. Aquatic roots were formed in the top soil layer when waterlogged. The percentage of aquatic roots increased with increasing amount of litter in the substrate when plants were flooded. It was concluded that the morphological responses of P. australis to litter strongly constrain its ability to maintain itself in deep water when the substrate contains litter. This might one of the explanations for the disappearance of P. australis along the waterward side of littoral zones.  相似文献   
3.
4.
5.
《Plant Ecology & Diversity》2013,6(2-3):217-229
Background: Urbanisation filters species in communities depending on their adaptability to conditions in built-up areas, especially in semi-natural habitats. Roadside vegetation is widespread along urban-rural gradients and is therefore a good place to study landscape-scale factors influencing plant community composition.

Aim: Our study aimed to assess how plant species distributions vary between urban and rural landscape contexts and to identify biological traits favoured in urban areas.

Methods: Presence/absence data for 63 indigenous common species were collected in 296 road verge patches distributed along the urban–rural gradient in three French cities. We investigated the effects of landscape composition on species assemblages and related individual species responses to urbanisation to functional traits associated with dispersal and persistence capacity.

Results: Many grassland species were negatively affected by increasing proportion of built-up areas in the landscape. Insect-pollination and high seed production appeared to be key traits favoured in grassland communities in urban areas, whereas dispersal modes were less related to plant distribution.

Conclusions: This study has demonstrated that urban filters affect common species of widespread, managed road verges. Better knowledge of the flora of these herbaceous roadsides may contribute to the conservation of common biodiversity within other grassland habitats found in urban areas.  相似文献   
6.
The fungal infection caused by Batrachochytrium dendrobatidis (Bd) in amphibians is known to be lethal when infection intensity values exceed loads of 10,000 zoospores per individual. We investigated Bd infection intensity in 100 anurans of southern Brazil. Almost half of the individuals were infected and the intensity ranged from four to about 156,000 zoospore genomic equivalents. We found no clinical signs of chytridiomycosis and no evidence of mortality. However, we observed a reduction in the number of infected individuals with loads above 10,000 zoospores. This fact could be considered indirect evidence that individuals with high loads are removed from the population.  相似文献   
7.
《Current biology : CB》2019,29(22):3838-3850.e3
  1. Download : Download high-res image (221KB)
  2. Download : Download full-size image
  相似文献   
8.
Modifications of the Illinois River and associated tributaries have resulted in altered hydrologic cycles and persistent river‐floodplain connections during the growing season that frequently impede the establishment of hydrophytic vegetation and have reduced value for migratory waterfowl and other waterbirds. To help guide floodplain restoration, we compared energetic carrying capacity for waterfowl in two wetland complexes along the Illinois River under different management regimes during 2012–2015. The south pool of Chautauqua National Wildlife Refuge (CNWR) was seasonally flooded due to a partial river connection and managed for moist‐soil vegetation. Emiquon Preserve was hydrologically isolated from the Illinois River by a high‐elevation levee and managed as a semipermanently flooded emergent marsh. Semipermanent emergent marsh management at Emiquon Preserve produced 5,495 energetic use‐days (EUD)/ha for waterfowl and other waterbirds across wetland cover types and years, and seasonal moist‐soil management at CNWR produced 6,199 EUD/ha in one of 4 years. At Emiquon Preserve, the aquatic bed cover type produced 9,660 EUD/ha, followed by 5,261 EUD/ha in moist‐soil, 1,398 EUD/ha in persistent emergent, 1,185 EUD/ha in hemi‐marsh, and 12 EUD/ha in open water cover types. At CNWR, the annual grass and sedge cover type produced 7,031 EUD/ha, followed by 5,618 EUD/ha in annual broadleaf and 1,305 EUD/ha in perennial grass cover types. Restoration of floodplain wetlands in isolation from frequent flood pulses during the growing season can produce hemi‐marsh and aquatic bed vegetation communities that provide high‐quality habitat for waterfowl and which have been mostly eliminated from large river systems in the Midwest, U.S.A.  相似文献   
9.
AIMS: To study the growth, thermotolerance and biofilm formation of the emergent pathogen Enterobacter sakazakii in infant formula milk (IFM). METHODS AND RESULTS: The temperature range, death kinetics and biofilm formation of E. sakazakii were determined using impedance microbiology and conventional methods. In IFM the organism grew as low as 6 degrees C and optimally at 37-43 degrees C. In faecal coliform tests, 23% of strains (n = 70) produced gas from lauryl sulphate broth (LSB) at 44 degrees C after 48 h incubation. Three strains failed to grow in LSB at any of the temperatures. The D-value of cells suspended in IFM was determined between 54 and 62 degrees C. The resultant z-value was 5.7 degrees C. The organism was able to adhere and grow on latex, polycarbonate, silicon and to a lesser extent stainless steel. CONCLUSIONS: Enterobacter sakazakii was able to grow at refrigeration temperatures and on infant-feeding equipment. The thermotolerance of the organism was similar to other Enterobacteriaceae and should be killed during standard pasteurization treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Enterobacter sakazakii has been associated with infant meningitis through consumption of contaminated IFM. Enterobacter sakazakii is able to grow in IFM during storage at refrigeration temperatures and attach to infant-feeding equipment, which may become reservoirs of infection.  相似文献   
10.
1. Standing dead plant litter of emergent macrophytes frequently constitutes a significant fraction of the detrital mass in many freshwater wetland and littoral habitats. Rates of leaf senescence and decomposition of the emergent macrophyte Juncus effusus were examined in a small freshwater wetland in central Alabama, U.S.A. Juncus effusus leaves in the initial stages of senescence were tagged in random plant tussocks and monitored periodically to determine in situ rates of leaf senescence and death. Fully senescent leaves were collected, placed in litter bags, and suspended above the sediments to simulate standing dead decay conditions. Litter bags were periodically retrieved over 2 years and analysed for weight loss, litter nutrient contents (N, P), associated fungal biomass and fungal taxa. 2. Senescence and death of J. effusus leaves proceeds from the leaf tip to the base at an exponential rate. The rate of senescence and death of leaf tissue increased with increasing temperatures. Plant litter decomposition was slow (k = 0.40 yr–1), with 49% weight loss observed in 2 years. Both the nitrogen (N) and phosphorus (P) concentration (%) of litter increased during decomposition. However, the total amount of nitrogen (mg) in litter bags remained stable and phosphorus increased slightly during the study period. 3. Fungal biomass associated with plant litter, as measured by ergosterol concentrations, varied between 3 and 8% of the total detrital weight. Values were not significantly different among sampling dates (P > 0.05, ANOVA, Tukey). Fungi frequently identified on decaying litter were Drechslera sp., Conioscypha lignicola (Hyphomycetes), Phoma spp. (Coelomycetes), Panellus copelandii and Marasmiellus sp. (Basidiomycota). 4. These results support previous findings that plant litter of emergent macrophytes does not require submergence or collapse to the sediment surface to initiate microbial colonization and litter decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号