首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   3篇
  134篇
  2024年   4篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   8篇
  2011年   11篇
  2010年   6篇
  2009年   12篇
  2008年   6篇
  2007年   17篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1978年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
1.
2.
3.
Abstract: Direct and indirect contact between wild and farmed cervids along perimeter fences may play a role in transmission of diseases like chronic wasting disease (CWD), but no studies have quantified such interactions. At 9 high-fenced commercial elk (Cervus elaphus) farms in Colorado, USA, during October 2003 to January 2005, we used animal-activated video to estimate rates of fence-line use by wild cervids, rates of direct contact between farmed and wild cervids, and probability of direct contact when wild cervids were present. We recorded 8-fold-more wild elk per unit time than mule deer (Odocoileus hemionus) at fence lines. Depending on site, we recorded 0.66 to 46.90 wild elk per 1,000 hours of camera monitoring. We documented 77 interactions between wild and farmed elk involving naso-oral contact and no contact between wild mule deer and farmed elk. Rate of direct contact ranged from 0.00 to 1.92 direct contacts per 1,000 hours of camera monitoring among sites. Given recorded presence of wild elk, estimated probability of observing direct contact during a 2-minute video recording ranged from 0.00 to 0.11 among sites. Risk of direct contact was about 3.5 times greater for single woven-wire fence compared with offset electric fence attached to a single woven-wire fence. We observed no direct contact through double woven-wire fences. Because little is currently known about infection rates associated with infection mechanisms, we cannot infer a level of CWD infection risk from our results, but some form of double fencing should reduce potential for direct and indirect transmission of disease into or out of elk farms.  相似文献   
4.
5.
Abstract: Decades of research have produced substantial data on elk (Cervus elaphus) diets in winter, when foraging conditions are most likely to affect population dynamics. Using data from 72 studies conducted in western North America between 1938 and 2002, we collated data on elk diets and environmental variables. We used these data to quantify diet selection by elk and to test whether variation in elk diets is associated with habitat type, winter severity, period of winter, human hunting, and study method. Graminoids (grasses and grass-like plants such as sedges) dominated elk diets and consistently occurred at a higher proportion in the diet than in elk foraging habitats, indicating preference. Forbs commonly made up ≤5% of the diet, with no evidence for preference; we conclude that forb use is largely incidental to grazing for graminoids. Browse was consumed in proportion to its availability, implying that the amount of browse in the diet was primarily determined by habitat use rather than selection. Comparing the diets of elk and sympatric ruminants, elk consistently selected graminoids more strongly than sympatric ruminants with the exception of bison (Bison bison), suggesting that elk are not environmentally forced to adopt the graminoid-biased diet that they normally select. The proportion of open meadows and grasslands on winter ranges was strongly and positively associated with graminoid consumption by elk. The proportion of graminoids in the diet was significantly lower in elk experiencing severe winter conditions or predation risk from human hunting. The period of winter (early, middle, and late) had only small effects on elk diets, as did the method by which the diet was determined. Overall, variation in elk diets is well-explained by a consistent tendency to select graminoids if available, modified by winter habitat type, predation risk, and winter severity, which can constrain habitat selection and access to grazing opportunities. To fully understand variation in foraging behavior, biologists should recognize these broad patterns when interpreting resource selection data. Managers should recognize that inconspicuous behavioral responses to environmental stimuli can alter the diet in ways that probably carry nutritional consequences.  相似文献   
6.
ABSTRACT We used 38,709 fixes collected from December 2003 through June 2006 from 44 elk (Cervus elaphus) fitted with Global Positioning System collars and hourly traffic data recorded along 27 km of highway in central Arizona, USA, to determine how traffic volume affected elk distribution and highway crossings. The probability of elk occurring near the highway decreased with increasing traffic volume, indicating that elk used habitat near the highway primarily when traffic volumes were low (<100 vehicles/hr). We used multiple logistic regression followed by model selection using Akaike's Information Criterion to identify factors influencing probability of elk crossings. We found that increasing traffic rates reduced the overall probability of highway crossing, but this effect depended on both season and the proximity of riparian meadow habitat. Elk crossed highways at higher traffic volumes when accessing high quality foraging areas. Our results indicate that 1) managers assessing habitat quality for elk in areas with high traffic-volume highways should consider that habitat near highways may be utilized at low traffic volumes, 2) in areas where highways potentially act as barriers to elk movement, increasing traffic volume decreases the probability of highway crossings, but the magnitude of this effect depends on both season and proximity of important resources, and 3) because some highway crossings still occurred at the high traffic volumes we recorded, increasing traffic alone will not prevent elk-vehicle collisions. Managers concerned with elk-vehicle collisions could increase the effectiveness of wildlife crossing structures by placing them near important resources, such as riparian meadow habitat.  相似文献   
7.
8.
Abstract: Stratification is commonly used to improve sampling efficiency of aerial surveys of ungulate populations with strata typically based on a priori information, such as preflight animal observations or vegetation attributes as surrogates for animal densities. We evaluated the usefulness of stratifying survey units for elk (Cervus elaphus) in the Rocky Mountain foothills of Alberta, Canada, using a resource selection function (RSF). We compared precision and design efficiency (DEFF) of population estimates from stratification approaches based on an RSF model to the past approach using amount of forest cover. We used a sample of telemetry relocations taken over a 3-year period from 165 elk, rarified to times of the day and months of the year when aerial surveys are conducted, to develop the RSF. We then used the top RSF model, based on Akaike's Information Criterion, to derive the average RSF value for an 8-km2 survey unit. Using survey data from the first year, we evaluated binning schemes to define RSF-oriented strata based on poststratification and showed that Jenks natural breaks in the RSF values provided the greatest improvement in DEFF and increased precision, compared to 2 other stratification schemes. We then used this approach with data from 2 additional surveys to find that stratification by RSF consistently improves relative precision and design efficiency of elk population estimates, whether we employ pre- or poststratification. Where a RSF is available it could be used as a surrogate for animal densities when conducting stratified sampling for population surveys.  相似文献   
9.
In 2001 and 2002, 52 elk (Cervus canadensis; 21 males, 31 females), originally obtained from Elk Island National Park, Alberta, Canada, were transported and released into Cataloochee Valley in the northeastern portion of Great Smoky Mountains National Park (GRSM, Park), North Carolina, USA. The annual population growth rate (λ) was negative (0.996, 95% CI = 0.945–1.047) and predation by black bears (Ursus americanus) on elk calves was identified as an important determinant of population growth. From 2006 to 2008, 49 bears from the primary elk calving area (i.e., Cataloochee Valley) were trapped and translocated about 70 km to the southwestern portion of the Park just prior to elk calving. Per capita recruitment (i.e., the number of calves produced per adult female that survive to 1 year of age) increased from 0.306 prior to bear translocation (2001–2005) to 0.544 during years when bears were translocated (2006–2008) and λ increased to 1.118 (95% CI = 1.096–1.140). Our objective was to determine whether per capita calf recruitment rates after bear removal (2009–2019) at Cataloochee were similar to the higher rates estimated during bear removal (i.e., long-term response) or if they returned to rates before bear removal (i.e., short-term response), and how those rates compared with recruitment from portions of our study area where bears were not relocated. We documented 419 potential elk calving events and monitored 129 yearling and adult elk from 2001 to 2019. Known-fate models based on radio-telemetry and observational data supported calf recruitment returning to pre-2006 levels at Cataloochee (short-term response); recruitment of Cataloochee elk before and after bear relocation was lower (0.184) than during bear relocation (0.492). Recruitment rates of elk outside the removal area during the bear relocation period (0.478) were similar to before and after rates (0.420). In the Cataloochee Valley, cause-specific annual calf mortality rates due to predation by bears were 0.319 before, 0.120 during, and 0.306 after bear relocation. In contrast, the cause-specific annual mortality rate of calves in areas where bears were not relocated was 0.033 after the bear relocation period, with no bear predation on calves before or during bear relocation. The mean annual population growth rate for all monitored elk was 1.062 (95% CI = 0.979–1.140) after bear relocation based on the recruitment and survival data. Even though the effects of bear removal were temporary, the relocations were effective in achieving a short-term increase in elk recruitment, which was important for the reintroduction program given that the elk population was small and vulnerable to extirpation.  相似文献   
10.
The recent introduction of bank vole (Clethrionomys glareolus) as an additional laboratory animal for research on prion diseases revealed an important difference when compared to the mouse and the Syrian hamster, since bank voles show a high susceptibility to infection by brain homogenates from a wide range of diseased species such as sheep, goats, and humans. In this context, we determined the NMR structure of the C-terminal globular domain of the recombinant bank vole prion protein (bvPrP) [bvPrP(121-231)] at 20 °C. bvPrP(121-231) has the same overall architecture as other mammalian PrPs, with three α-helices and an antiparallel β-sheet, but it differs from PrP of the mouse and most other mammalian species in that the loop connecting the second β-strand and helix α2 is precisely defined at 20 °C. This is similar to the previously described structures of elk PrP and the designed mouse PrP (mPrP) variant mPrP[S170N,N174T](121-231), whereas Syrian hamster PrP displays a structure that is in-between these limiting cases. Studies with the newly designed variant mPrP[S170N](121-231), which contains the same loop sequence as bvPrP, now also showed that the single-amino-acid substitution S170N in mPrP is sufficient for obtaining a well-defined loop, thus providing the rationale for this local structural feature in bvPrP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号