首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   24篇
  国内免费   9篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   12篇
  2019年   11篇
  2018年   8篇
  2017年   8篇
  2016年   15篇
  2015年   14篇
  2014年   19篇
  2013年   25篇
  2012年   13篇
  2011年   10篇
  2010年   10篇
  2009年   10篇
  2008年   13篇
  2007年   11篇
  2006年   15篇
  2005年   15篇
  2004年   15篇
  2003年   9篇
  2002年   12篇
  2001年   10篇
  2000年   7篇
  1999年   8篇
  1998年   12篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   8篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
1.
The responses to water stress of the bulk modulus of elasticity () and the apoplastic water fraction were examined using six sunflower cultivars of differing capacity for osmotic adjustment (OA). Water stress did not affect the partitioning of water between apoplastic (ca. 20%) and symplastic fractions in leaves which expanded during the exposure to stress in any genotype. Hence, no genotype-linked effects on either the buffering of cell water status during stress or on the estimates of bulk leaf osmotic potential could be expected. Genotypes differed in the degree of change in (estimated from pressure/volume [P/V] curves) and OA (estimated using both ln RWC/ ln o plots and P/V curves) induced by exposure to stress. In three genotypes increased significantly (p=0.05) as a consequence of stress, in another three change were small. OA was the only attribute of the three examined that could have contributed to turgor maintenance under stress. There was a strong negative association between leaf expansion and degree of OA across genotypes (r=–0.91) and a strong positive one between OA and (r=0.94). However all genotypes evidenced some degree of OA. These results are consistent with part of the genotype differences in OA being attributable to variations in leaf expansion during exposure to stress.  相似文献   
2.
The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 l l–1) or elevated CO2 (700 l l–1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.  相似文献   
3.
4.
Summary Continuing microscopic studies on cell-water relations with single cells (Gerdenitsch 1979) based on the relationship between the osmotic potential and the cell water volume, tissue cells were investigated. The experiments were done with inner epidermis of the bulb scale of onion (Allium cepa) which seemed to be most suitable for those investigations. Using a diagram described byRichter (1978) pressure volume curves of cells at the margin of the epidermis pieces neighboured by a various amount of dead cells and of cells in the center of tissue were worked out. They were contributed to one of three groups according to their amount of free surface (group 1: >1/3 free surface, group 2: <1/3 free surface, group 3: cells surrounded only by living-cells). Curves of the mean values of each of the three groups were compared as well as the mean -values, calculated as a measure for the elasticity of the cell wall.It was found that cells surrounded only by living cells had -values less than with both other groups. Assuming from observations during the experiments that all cells had very similar properties, this difference could be attributed to the expression of the effect of tissue counterpressure.  相似文献   
5.
Abstract. Measurements of the water-relation parameters of the giant subepidermal cells (volume, V = 0.119 to 1.658 mm3; = 0.53±0.35 mm3, SD, n = 23) and the smaller mesocarp parenchyma cells ( V = 0.10 to 0.79×10−3 mm3; = 0.36±0.27×10−3 mm3, SD, n = 6) of the inner pericarp surface of Capsicum annuum L. were made using the Jülich pressure probe. The volumetric elastic modulus ɛ for the large cells was between 1.5 and 27 MPa for a pressure range of 0.09 to 0.41 MPa. For the small cells ɛ was 0.1 to 0.6 MPa for a pressure range of 0.22 to 0.39 MPa. The turgor pressure P , the half-time of water exchange T 1/2, and the hydraulic conductivity L p were as follows, with SD and number of replicates: large cells, P = 0.27±0.06 MPa (23), T 1/2=2.7±2.2 s (46), L p=5.8±3.7 pm s−1 Pa (46); small cells, P = 0.33±0.07 MPa (6), T 1/2= 33±10s (12), L p=0.21±0.07 pm s−1 Pa−1 (12). The determination of these basic water-relation parameters is considered as a prerequisite for future ecotoxicological and phytopathological studies. The differences between the large and the small cells are discussed in relation to a desirable biophysical definition of succulence. Further, for the large cells a pressure and volume dependence of ɛ was demonstrated.  相似文献   
6.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   
7.
The degree of technological change biased to the environmental factor is crucial to industrial sustainable development. Using the stochastic frontier analysis method based on the translog production function and the panel data of 32 industrial sub-sectors in Shanghai over 1994–2011, this paper combines the evolution dynamic of the frontier technological structure with the evolution dynamic of technological change direction to estimate the output elasticities of production factors and the growth rate of green total factor productivity. Also, we investigate and compare the degrees of technological change biased to four production factors, i.e., capital, labor, energy, and carbon emissions. The results show that the industrial green total factor productivity in Shanghai presents an overall upward trend and mainly depends on the technical efficiency change. The improvements of labor productivity, R&D intensity, and energy efficiency can effectively enhance the green technical efficiency, while capital deepening has a mitigation effect on the green technical efficiency. The technological change of Shanghai's industrial production biases to energy use and capital saving, causing a high energy demand of industrial development. Under the dual impacts of economic development and energy-saving and emission-reduction policies, the degree of technological change biased to the environmental factor (carbon emissions) displays strong and weak alternations, indicating that the green bias of industrial technological change in Shanghai is not stable and that the green transformation of industrial development model needs to be further advanced.  相似文献   
8.
The first part of this review on entropic elastic processes in protein mechanisms (Urry, 1988) demonstrated with the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)n that elastic structure develops as the result of an inverse temperature transition and that entropic elasticity is due to internal chain dynamics in a regular nonrandom structure. This demonstration is contrary to the pervasive perspective of entropic protein elasticity of the past three decades wherein a network of random chains has been considered the necessary structural consequence of the occurrence of dominantly entropic elastomeric force. That this is not the case provides a new opportunity for understanding the occurrence and role of entropic elastic processes in protein mechanisms. Entropic elastic processes are considered in two classes: passive and active. The development of elastomeric force on deformation is class I (passive) and the development of elastomeric force as the result of a chemical process shifting the temperature of a transition is class II (active). Examples of class I are elastin, the elastic filament of muscle, elastic force changes in enzyme catalysis resulting from binding processes and resulting in the straining of a scissile bond, and in the turning on and off of channels due to changes in transmembrane potential. Demonstration of the consequences of elastomeric force developing as the result of an inverse temperature transition are seen in elastin, where elastic recoil is lost on oxidation, i.e., on decreasing the hydrophobicity of the chain and shifting the temperature for the development of elastomeric force to temperatures greater than physiological. This is relevant in general to loss of elasticity on aging and more specifically to the development of pulmonary emphysema. Since random chain networks are not the products of inverse temperature transitions and the temperature at which an inverse temperature transition occurs depends on the hydrophobicity of the polypeptide chain, it now becomes possible to consider chemical processes for turning elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide chain. This is herein called mechanochemical coupling of the first kind; this is the chemical modulation of the temperature for the transition from a less-ordered less elastic state to a more-ordered more elastic state. In the usual considerations to date, development of elastomeric force is the result of a standard transition from a more-ordered less elastic state to a less-ordered more elastic state. When this is chemically modulated, it is herein called mechanochemical coupling of the second kind. For elastin and the polypentapeptide of elastin, since entropic elastomeric force results on formation of a regular nonrandom structure and thermal randomization of chains results in loss of elastic modulus to levels of limited use in protein mechanisms, consideration of regular spiral-like structures rather than ramdom chain networks or random coils are proposed for mechanochemical coupling of the second kind. Chemical processes to effect mechanochemical coupling in biological systems are most obviously phosphorylation-dephosphorylation and changes in calcium ion activity but also changes in pH. These issues are considered in the events attending parturition in muscle contraction and in cell motility.  相似文献   
9.
In total hip arthroplasty and particularly in revision surgery, computer assisted pre-operative prediction of the best possible anchorage strategy for implant fixation would be a great help to the surgeon. Computer simulation relies on validated numerical models. In the current study, three density–elasticity relationships (No. 1–3) from the literature for inhomogeneous material parameter assignment from CT data in automated finite element (FE) modeling of long bones were evaluated for their suitability for FE modeling of human pelvic bone. Numerical modal analysis was conducted on 10 FE models of hemipelvic bone specimens and compared to the gold standard provided by experimental modal analysis results from a previous in-vitro study on the same specimens. Overall, calculated resonance frequencies came out lower than measured values. Magnitude of mean relative deviation of numerical resonance frequencies with regard to measured values is lowest for the density–elasticity relationship No. 3 (−15.9%) and considerably higher for both density–elasticity relationships No. 1 (−41.1%) and No. 2 (−45.0%). Mean MAC values over all specimens amount to 77.8% (No. 1), 78.5% (No. 2), and 83.0% (No. 3). MAC results show, that mode shapes are only slightly influenced by material distribution. Calculated resonance frequencies are generally lower than measured values, which indicates, that numerical models lack stiffness. Even when using the best suited (No. 3) out of three investigated density–elasticity relationships, in FE modeling of pelvic bone a considerable underestimation of model stiffness has to be taken into account.  相似文献   
10.
Atomic force microscopy (AFM) can measure the mechanical properties of plant tissue at the cellular level, but for in situ observations, the sample must be held in place on a rigid support and it is difficult to obtain accurate data for living plants without inhibiting their growth. To investigate the dynamics of root cell stiffness during seedling growth, we circumvented these problems by using an array of glass micropillars as a support to hold an Arabidopsis thaliana root for AFM measurements without inhibiting root growth. The root elongated in the gaps between the pillars and was supported by the pillars. The AFM cantilever could contact the root for repeated measurements over the course of root growth. The elasticity of the root epidermal cells was used as an index of the stiffness. By contrast, we were not able to reliably observe roots on a smooth glass substrate because it was difficult to retain contact between the root and the cantilever without the support of the pillars. Using adhesive to fix the root on the smooth glass plane overcame this issue, but prevented root growth. The glass micropillar support allowed reproducible measurement of the spatial and temporal changes in root cell elasticity, making it possible to perform detailed AFM observations of the dynamics of root cell stiffness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号