首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   24篇
  国内免费   10篇
  2023年   3篇
  2022年   7篇
  2021年   11篇
  2020年   10篇
  2019年   20篇
  2018年   15篇
  2017年   13篇
  2016年   13篇
  2015年   16篇
  2014年   18篇
  2013年   34篇
  2012年   12篇
  2011年   28篇
  2010年   19篇
  2009年   20篇
  2008年   19篇
  2007年   15篇
  2006年   19篇
  2005年   22篇
  2004年   11篇
  2003年   27篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   8篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   6篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有425条查询结果,搜索用时 31 毫秒
1.
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.  相似文献   
2.
《Cell reports》2020,30(1):61-68.e4
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
  相似文献   
3.
Abstract Lipid bilayer experiments were performed with chromosome-encoded haemolysin of Escherichia coli . The addition of the toxin to the aqueous phase bathing lipid bilayer membranes of asolectin resulted in the formation of transient ion-permeable channels with two states at small transmembrane voltages. One is prestate (single-channel conductance 40 pS in 0.15 M KCl) of the open state, which had a single-channel conductance of 420 pS in 0.15 M KCl and a mean lifetime of 30 s. Membranes formed of pure lipids were rather inactive targets for this haemolysin. Experiments with different salts suggested that the haemolysin channel was highly cation-selective at neutral pH. The mobility sequence of the cations in the channel was similar if not identical to their mobility sequence in the aqueous phase. The single-channel data were consistent with a wide, water-filled channel with an estimated minimal diameter of about 1 nm. The pore-forming properties of chromosome-encoded haemolysin were compared with those of plasmid-encoded haemolysin. Both toxins share common features, oligomerize probably to form pores in lipid bilayer membranes. Both types of haemolysin channels have similar properties but different lifetimes.  相似文献   
4.
The rate-limiting step for the absorption of insulin solutions after subcutaneous injection is considered to be the dissociation of self-associated hexamers to monomers. To accelerate this absorption process, insulin analogues have been designed that possess full biological activity and yet have greatly diminished tendencies to self-associate. Sedimentation velocity and static light scattering results show that the presence of zinc and phenolic ligands (m-cresol and/or phenol) cause one such insulin analogue, LysB28ProB29-human insulin (LysPro), to associate into a hexameric complex. Most importantly, this ligand-bound hexamer retains its rapid-acting pharmacokinetics and pharmacodynamics. The dissociation of the stabilized hexameric analogue has been studied in vitro using static light scattering as well as in vivo using a female pig pharmacodynamic model. Retention of rapid time-action is hypothesized to be due to altered subunit packing within the hexamer. Evidence for modified monomer-monomer interactions has been observed in the X-ray crystal structure of a zinc LysPro hexamer (Ciszak E et al., 1995, Structure 3:615-622). The solution state behavior of LysPro, reported here, has been interpreted with respect to the crystal structure results. In addition, the phenolic ligand binding differences between LysPro and insulin have been compared using isothermal titrating calorimetry and visible absorption spectroscopy of cobalt-containing hexamers. These studies establish that rapid-acting insulin analogues of this type can be stabilized in solution via the formation of hexamer complexes with altered dissociation properties.  相似文献   
5.
The rate assay of alpha-toxin assembly in membrane   总被引:1,自引:0,他引:1  
Abstract A rapid and easy method to determine the 'rate' of the assembly of α-toxin from Staphylococus aureus in erythrocyte membrane was described. Upon addition of a small amount of α-toxins into erythrocyte suspension, absorbance at 700 nm decreased linearly after a short period of lag time. From the linear portion of the record the rate of the assembly of α-toxin was calculated. An optimum temperature and an optimum pH for the assembly of the toxin on erythrocyte membranes were found to be 25–30°C and pH 5.  相似文献   
6.
Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways:  相似文献   
7.
Soluble oligomeric amyloid-β (Aβ) has been suggested to impair synaptic and neuronal function, leading to neurodegeneration that is clinically observed as the memory and cognitive dysfunction characteristic of Alzheimer disease, while the precise mechanism(s) whereby oligomeric Aβ causes neurotoxicity remains unknown. Recently, the cellular prion protein (PrPC) was reported to be an essential co-factor in mediating the neurotoxic effect of oligomeric Aβ. Our recent study showed that Prnp−/− mice are resistant to the neurotoxic effect of oligomeric Aβ in vivo and in vitro. Furthermore, application of an anti-PrPC antibody or PrPC peptide was able to block oligomeric Aβ-induced neurotoxicity. These findings demonstrate that PrPC may be involved in neuropathologic conditions other than conventional prion diseases, i.e., Creutzfeldt-Jakob disease.  相似文献   
8.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   
9.
Pulmonary lymphangioleiomyomatosis (LAM) is a rare, low-grade neoplasm affecting almost exclusively women of childbearing age. LAM belongs to the family of perivascular epithelioid cell tumors, characterized by spindle and epithelioid cells with smooth muscle and melanocytic differentiation. LAM cells infiltrate the lungs, producing multiple, bilateral lesions rich in lymphatic channels and forming cysts, leading to respiratory insufficiency. Here we used antibodies against four lymphatic endothelial markers—podoplanin (detected by D2-40), prospero homeobox 1 (PROX1), vascular endothelial growth factor receptor 3 (VEGFR-3), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)—to determine whether LAM cells show lymphatic differentiation. Twelve of 12 diagnostic biopsy specimens (early-stage LAM) and 19 of 19 explants (late-stage LAM) showed immunopositivity for D2-40 in most neoplastic cells. PROX1, VEGFR-3, and LYVE1 immunoreactivity varied from scarce in the early stage to abundant in the late stage. Lymphatic endothelial, smooth muscle, and melanocytic markers were partially co-localized. These findings indicate that lymphatic endothelial differentiation is a feature of LAM and provide evidence of a previously unidentified third lineage of differentiation in this neoplasm. This study has implications for the histological diagnosis of LAM, the origin of the neoplastic cells, and potential future treatment with drugs targeting lymphangiogenesis.  相似文献   
10.
Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured‐cells (BY‐2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY‐2 cells harboring a vSPO‐cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N‐terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA. Biotechnol. Bioeng. 2013; 110: 1174–1179. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号