首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   56篇
  国内免费   108篇
  407篇
  2024年   1篇
  2023年   11篇
  2022年   11篇
  2021年   3篇
  2020年   19篇
  2019年   15篇
  2018年   17篇
  2017年   18篇
  2016年   19篇
  2015年   20篇
  2014年   13篇
  2013年   17篇
  2012年   17篇
  2011年   16篇
  2010年   21篇
  2009年   20篇
  2008年   27篇
  2007年   25篇
  2006年   20篇
  2005年   15篇
  2004年   17篇
  2003年   13篇
  2002年   11篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   10篇
  1995年   2篇
  1991年   1篇
  1982年   1篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
1.
Abstract. Flux densities of water vapour and carbon dioxide were measured for a Mediterranean macchia canopy. Results show good agreement between the measured available energy and the sum of latent sensible and heat flux densities determined with the eddy correlation technique. Joint evaluation of the Bowen ratio, aerodynamic resistance, canopy resistance and the 'omega factor' suggests that the macchia canopy is intermediate in aerodynamic roughness between coniferous and deciduous canopies. Maximum daytime carbon flux densities ranged from -14 to -22(μnol m−2 s−1 on a ground area basis. The ratio of transpiration to assimilation (E/A) was a function of incident photo-synthetic photon flux density below about 400 μmol m−2s−1 and above it was fairly constant at 272 mol mol−1 (H2O/CO2). The relationship between carbon influx and canopy conductance was linear. Results show promising applications of the eddy correlation technique for evaluating physiological features of canopies, treated as unitary functional systems.  相似文献   
2.
Measurements of N2O emission fluxes from a 3 ha field of winter wheat were measured using eddy covariance and relaxed eddy accumulation continuously over 10 days during April 1994. The measurements averaged fluxes over approximately 105 m2 of the field, which was fertilised with NH4NO3 at a rate of 43 kg N ha-1 at the beginning of the measurements. The emission fluxes became detectable after the first heavy rainfall, which occured 4 days after fertiliser application. Emissions of N2O increased rapidly during the day following the rain to a maximum of 280 ng N m-2s-1 and declined over the following week. During the period of significant emission fluxes, a clear diurnal cycle in N2O emission was observed, with the daytime maximum coinciding with the soil temperature maximum at 12 cm depth. The temperature dependence of the N2O emission was equivalent to an activation energy for N2O production of 108 kJ mol-1. The N2O fluxes measured using relaxed eddy accumulation, averaged over 30 to 270 min, were in agreement with those of the eddy covariance system within 60%. The total emission of N2O over the period of continuous measurement (10 days) was equivalent to about 10 kg N2O-N, or 0.77% of the N fertiliser applied.  相似文献   
3.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
4.
长白山阔叶红松林CO2通量与温度的关系   总被引:3,自引:0,他引:3  
应用涡度相关法观测的通量数据和环境因子数据,在生态系统水平上分析了长白山阔叶红松林生长季温度与CO2通量之间的关系.结果表明:(1)在相同的光合有效辐射水平下,净生态系统CO2交换量(NEE)随温度Ta的变化趋势为,在Ta〈20℃范围内,NEE随温度的增加而增加,在Ta=20℃附近有极大值,随温度的继续增加NEE呈下降的趋势,同时NEE还具有明显的季节变化,表现为7月〉6月〉8月〉9月〉5月〉4月〉10月.(2)应用Michaelis-Menten方程计算得出最大光合速率Pmax和生态系统呼吸Re,分析其与温度的关系发现,Pmax随温度的变化呈S型曲线,Re则随着温度的升高而呈指数上升的趋势,曲线为:Re=0.0607 exp(0.0666Tα),R^2=0.96.夜间生态系统呼吸的Q10为3.15.(3)通过对NEE与环境因子的偏相关分析表明,温度对NEE的偏相关系数在生长季呈现先减小后增大的趋势,说明在生长季初期和末期升高温度比生长季中期对NEE的影响要大.  相似文献   
5.
亚热带-暖温带过渡区天然栎林的能量平衡特征   总被引:1,自引:0,他引:1  
牛晓栋  刘晓静  刘世荣  孙鹏森 《生态学报》2018,38(18):6701-6711
利用开路涡度相关系统和常规气象观测仪器观测了我国北亚热带-暖温带气候过渡带(河南南阳)的一片锐齿栎天然林的能量通量及常规气象。以一个完整年(2016年10月—2017年9月)的观测数据为依据,定量分析了此锐齿栎林的能量通量的日变化、季节变化以及各能量分量的分配特征,并计算了能量闭合度以及波文比。结果表明:锐齿栎林观测期间一整年净辐射为2626.17 MJ/m~2,感热通量为867.1 MJ/m~2,潜热通量为1417.25 MJ/m~2,土壤热通量为-2.60 MJ/m~2,土壤为热源;各能量分量日变化基本呈单峰型曲线,季节变化特征明显。非生长季,锐齿栎林的能量主要分配给感热通量,占净辐射的54.18%;生长季,能量主要分配给潜热通量,占净辐射的67.48%。观测期间研究区年降雨量较平均值稍大(1231.8 mm),森林蒸散量为579 mm,仅为降雨量的47%。波文比受森林物候变化影响较大,在非生长季平均值约为2.1,生长季约为0.2。土壤热通量在生长季2017年4—9月份为正值,土壤表现为热汇,其余月份皆为热源。土壤热通量的变化过程主要受净辐射调控,森林物候也起了一定的作用。河南宝天曼锐齿栎森林通量观测站全年能量闭合度为67%,在国际同类观测站的范围之内(55%—99%)。不能完全闭合的原因可能与通量源区面积不匹配、计算能量平衡时忽略冠层热存储等有关。  相似文献   
6.
Accurate estimation of below-canopy CO2 flux (Fcb) in typical forest ecosystems is of great importance to validate terrestrial carbon balance models. Continuous eddy covariance measurements of Fcb were conducted in a coniferous and broad-leaved mixed forest located in Dinghushan Nature Reserve of South China. Using year-round data, Fcb dynamics and its environmental response were analyzed, and the results mainly showed that: (1) Fcb decreased during daytime which indicated that the understory of the forest continued photosynthesis throughout the year; however, understory and soil acted as CO2 source as a whole. (2) Using soil temperature (Ts) as a dependent variable, all of Van’t Hoff equation, Arrhenius equation and Lloyd-Taylor equation can explain a considerable variation of Fcb. Among those three equations Lloyd-Taylor equation is the best to reflect the relationship between soil respiration and temperature for its ability in revealing the variation of Q10 with temperature. (3) Fcb derived from Lloyd-Taylor equation is utterly determined by Ts, while Fcb derived from the multiplicative model is driven by Ts and soil moisture (Ms). The multiplicative model can reflect the synthetic effect of Ts and Ms; therefore it explains more Fcb variations than Lloyd-Taylor equation does. (4)Fcb derived from the multiplicative model was higher than that from Lloyd-Taylor equation when Ms was relatively high; on the contrary, Fcb derived from the multiplicative model was lower than that from Lloyd-Taylor equation when Ms was low, indicating that Ms might be a main factor affecting Fcb when the ecosystem is stressed by low-moisture. (5) Annual Fcb of the forest in 2003 was estimated as (787.4±296.8) gCm-2a-1, which was 17% lower than soil respiration measured by statistic chamber method. CO2 flux measured by eddy covariance is often underestimated, and further study therefore calls for emphasis on methods quantifying Fcb components of respiration of soil, as well as respiration and photosynthesis of understory vegetations.  相似文献   
7.
The land‐atmosphere exchange of methane (CH4) and carbon dioxide (CO2) in a high‐Arctic wet tundra ecosystem (Rylekærene) in Zackenberg, north‐eastern Greenland, was studied over the full growing season and until early winter in 2008 and from before snow melt until early winter in 2009. The eddy covariance technique was used to estimate CO2 fluxes and a combination of the gradient and eddy covariance methods was used to estimate CH4 fluxes. Small CH4 bursts were observed during spring thawing 2009, but these existed during short periods and would not have any significant effect on the annual budget. Growing season CH4 fluxes were well correlated with soil temperature, gross primary production, and active layer thickness. The CH4 fluxes remained low during the entire autumn, and until early winter. No increase in CH4 fluxes were seen as the soil started to freeze. However, in autumn 2008 there were two CH4 burst events that were highly correlated with atmospheric turbulence. They were likely associated with the release of stored CH4 from soil and vegetation cavities. Over the measurement period, 7.6 and 6.5 g C m?2 was emitted as CH4 in 2008 and in 2009, respectively. Rylekærene acted as a C source during the warmer and wetter measurement period 2008, whereas it was a C sink for the colder and drier period of 2009. Wet tundra ecosystems, such as Rylekærene may thus play a more significant role for the climate in the future, as temperature and precipitation are predicted to increase in the high‐Arctic.  相似文献   
8.
We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome‐BGC simulations of fluxes. The young forest (Y site) was previously an old‐growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m?2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m?2 year?1), and it was largely from soils at both sites (77% of Re). The biological data show that above‐ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m?2 year?1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15‐km swath in the region, ANPP ranged from 76 g C m?2 year?1 at the Y site to 236 g C m?2 year?1 (overall mean 158 ± 14 g C m?2 year?1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome‐BGC model suggest that disturbance type and frequency, time since disturbance, age‐dependent changes in below‐ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget‐based observations to within ± 20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand‐replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10–20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long‐term pools (biomass and soils) in addition to short‐term fluxes has important implications for management of forests in the Pacific North‐west for carbon sequestration.  相似文献   
9.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   
10.
The impact of extreme drought and heat stress that occurred in the Midwestern U.S. in 2012 on evapotranspiration (ET), net ecosystem productivity (NEP), and water‐use efficiency (WUE) of three perennial ecosystems (switchgrass, miscanthus, prairie) and a maize/soybean agroecosystem was studied as part of a long‐term experiment. Miscanthus had a slower initial response but an eventually drastic ET as drought intensified, which resulted in the largest water deficit among the crops. The substantially higher ET at peak drought was likely supplied by access to deep soil water, but suggests that stomatal conductance of miscanthus during the drought may respond differently than the other ecosystems, consistent with an anisohydric strategy. While there was a discrepancy in the water consumption of maize and switchgrass/prairie in the early time of drought, all these ecosystems followed a water‐saving strategy when drought intensified. The gross primary production (GPP) of miscanthus dropped, but was reversible, when temperature reached 40 °C and still provided the largest total GPP among the ecosystems. Increased ET for miscanthus during 2012 resulted a large decline in ecosystem WUE compared to what was observed in other years. The biophysical responses of miscanthus measured during an extreme, historic drought suggest that this species can maintain high productivity longer than other ecosystems during a drought at the expense of water use. While miscanthus maintained productivity during drought, recovery lagged associated with depleted soil moisture. The enhanced ET of miscanthus may intensify droughts through increase supply of deep soil moisture to the atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号