首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
排序方式: 共有5条查询结果,搜索用时 10 毫秒
1
1.
We elucidated the extracellular ATP (eATP) signalling cascade active in programmed cell death (PCD) using cell cultures of Populus euphratica. Millimolar amounts of eATP induced a dose‐ and time‐dependent reduction in viability, and the agonist‐treated cells displayed hallmark features of PCD. eATP caused an elevation of cytosolic Ca2+ levels, resulting in Ca2+ uptake by the mitochondria and subsequent H2O2 accumulation. P. euphratica exhibited an increased mitochondrial transmembrane potential, and cytochrome c was released without opening of the permeability transition pore over the period of ATP stimulation. Moreover, the eATP‐induced increase of intracellular ATP, essential for the activation of caspase‐like proteases and subsequent PCD, was found to be related to increased mitochondrial transmembrane potential. NO is implicated as a downstream component of the cytosolic Ca2+ concentration but plays a negligible role in eATP‐stimulated cell death. We speculate that ATP binds purinoceptors in the plasma membrane, leading to the induction of downstream intermediate signals, as the proposed sequence of events in PCD signalling was terminated by the animal P2 receptor antagonist suramin.  相似文献   
2.
Extracellular ATP (eATP) is now recognized as an important signaling agent in plant growth and defense response to environmental stimuli. eATP has dual functions in plant cell signaling, which is largely dependent on its concentration in the extracellular matrix (ECM). A lethal level of eATP (extremely low or high) causes cell death, whereas a moderate level of eATP benefits plant growth and development. Ecto-apyrases (Nucleoside Triphosphate-Diphosphohydrolase) help control the eATP concentrations in the ECM, and thus contributing to the mediation of plant growth and defense response upon environmental stress. In this review, we summarize eATP signaling in plants and highlight the correlation between eATP homeostasis control and programmed cell death.  相似文献   
3.
A START POINT FOR EXTRACELLULAR NUCLEOTIDE SIGNALING
The recent discovery of a plant receptor for extracellu- lar nucleotides, reported by Choi et al. (2014), is a major breakthrough that had been anticipated for over a dec- ade. Plants release ATP into their extracellular matrix (ECM) during growth and when they are induced by vari- ous biotic and abiotic stimuli (Clark and Roux, 2011). That these extracellular nucleotides would activate receptors in plants was predicted by two sets of discoveries: that low- and sub-micromolar ATP could induce increases in [Ca2+]cyt, NO, and superoxide signaling intermediates that led to downstream growth, stomatal, and defense responses, and that these changes could be blocked by antagonists that blocked extracellular nucleotide receptors in animals (Demidchik et al., 2003; Song et al., 2006; Clark et al., 2011; Demidchik et al., 2009, 2011). Although mammalian biolo- gists had discovered two classes of receptors for extracel- lular nucleotides (P2X and P2Y) decades ago (Burnstock, 2007), there were no plant proteins obviously similar to these in any sequence data available. Clearly, if there were plant purinoceptors, they would be different from the mammalian receptors, and they could not be discovered by motif searches.  相似文献   
4.
The native resistance of most plant species against a wide variety of pathogens is known as non-host resistance (NHR), which confers durable protection to plant species. Only a few pathogens or parasites can successfully cause diseases. NHR is polygenic and appears to be linked with basal plant resistance, a form of elicited protection. Sensing of pathogens by plants is brought about through the recognition of invariant pathogen-associated molecular patterns (PAMPs) that trigger downstream defense signaling pathways. Race-specific resistance, (R)-gene mediated resistance, has been extensively studied and reviewed, while our knowledge of NHR has advanced only recently due to the improved access to excellent model systems. The continuum of the cell wall (CW) and the CW-plasma membrane (PM)-cytoskeleton plays a crucial role in perceiving external cues and activating defense signaling cascades during NHR. Based on the type of hypersensitive reaction (HR) triggered, NHR was classified into two types, namely type-I and type-II. Genetic analysis of Arabidopsis mutants has revealed important roles for a number of specific molecules in NHR, including the role of SNARE-complex mediated exocytosis, lipid rafts and vesicle trafficking. As might be expected, R-gene mediated resistance is found to overlap with NHR, but the extent to which the genes/pathways are common between these two forms of disease resistance is unknown. The present review focuses on the various components involved in the known mechanisms of NHR in plants with special reference to the role of CW-PM components.  相似文献   
5.
This study examines the roles of anion channels and ATP binding cassette (ABC) protein transporters in mediating elicitor-induced ATP release in Salvia miltiorrhiza hairy root cultures. The elicitor-induced ATP release was effectively blocked by two putative membrane anion channel blockers, niflumic acid and Zn2+, but not by a specific Cl channel blocker, phenylanthranilic acid. The elicitor-induced ATP release was also significantly suppressed by two ABC inhibitors, glibenclamide and ethacrynic acid. Notable ATP release from the hairy roots was also induced by verapamil (2 mM), an ABC activator in animal cells. The verapamil-induced ATP release was effectively blocked by niflumic acid, but only slightly inhibited by the ABC inhibitors. Another notable effect of verapamil was the induction of exocytosis, the secretion of vesicle-like particles to the root surface. The verapamil-induced exocytosis was not inhibited by nifulumic acid and YE did not induce the exocytosis. Overall, the results suggest a significant role of anion channels, a possible involvement of ABC proteins and no significant involvement of exocytosis in mediating the ATP efflux in hairy root cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号