首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   6篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2013年   1篇
  2012年   6篇
  2011年   3篇
  2006年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
2.
The adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism at the cellular as well as whole-body level. It is activated by low energy status that triggers a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. AMPK is involved in a wide range of biological activities that normalizes lipid, glucose, and energy imbalances. These pathways are dysregulated in patients with metabolic syndrome (MetS), which represents a clustering of major cardiovascular risk factors including diabetes, lipid abnormalities, and energy imbalances. Clearly, there is an unmet medical need to find a molecule to treat alarming number of patients with MetS. AMPK, with multifaceted activities in various tissues, has emerged as an attractive drug target to manage lipid and glucose abnormalities and maintain energy homeostasis. A number of AMPK activators have been tested in preclinical models, but many of them have yet to reach to the clinic. This review focuses on the structure-function and role of AMPK in lipid, carbohydrate, and energy metabolism. The mode of action of AMPK activators, mechanism of anti-inflammatory activities, and preclinical and clinical findings as well as future prospects of AMPK as a drug target in treating cardio-metabolic disease are discussed.  相似文献   
3.
The bile acid-activated nuclear receptor farnesoid X receptor (FXR) plays an important role in lipid and glucose metabolism, and in addition, it regulates multiple drug transporters involved in statin disposition. We examined whether a functional single nucleotide polymorphism (SNP) in FXR (-1G>T) influenced the lipid-lowering effect of rosuvastatin. In 385 Chinese patients with hyperlipidemia who had been treated with rosuvastatin 10 mg daily for at least 4 weeks, the association between the FXR -1G>T SNP and lipid response to rosuvastatin was analyzed. The FXR -1G>T SNP was not associated with baseline lipids but was significantly associated with the LDL cholesterol (LDL-C) and total cholesterol response to rosuvastatin. Carriers of the T-variant allele (GT+TT = 68+3) had 4.4% (95% CI: 1.2, 7.5%, P = 0.006) and 2.6% (95% CI: 0.3, 5.0%; P < 0.05) greater reductions in LDL-C and total cholesterol, respectively, compared with those with homozygous wild-type alleles. The association between the FXR polymorphism and the LDL-C response to rosuvastatin remained significant after adjusting for other covariants. This association of the variant allele of the FXR -1G>T polymorphism with a greater LDL-C response to rosuvastatin may suggest that this polymorphism influences the expression of the hepatic efflux transporters involved in biliary excretion of rosuvastatin.  相似文献   
4.
The effects of Therapeutic Lifestyle Change (TLC) diets, low and high in dietary fish, on apolipoprotein metabolism were examined. Subjects were provided with a Western diet for 6 weeks, followed by 24 weeks of either of two TLC diets (10/group). Apolipoprotein kinetics were determined in the fed state using stable isotope methods and compartmental modeling at the end of each phase. Only the high-fish diet decreased median triglyceride-rich lipoprotein (TRL) apoB-100 concentration (-23%), production rate (PR, -9%), and direct catabolism (-53%), and increased TRL-to-LDL apoB-100 conversion (+39%) as compared with the baseline diet (all P < 0.05). This diet also decreased TRL apoB-48 concentration (-24%), fractional catabolic rate (FCR, -20%), and PR (-50%) as compared with the baseline diet (all P < 0.05). The high-fish and low-fish diets decreased LDL apoB-100 concentration (-9%, -23%), increased LDL apoB-100 FCR (+44%, +48%), and decreased HDL apoA-I concentration (-15%, -14%) and PR (-11%, -12%) as compared with the baseline diet (all P < 0.05). On the high-fish diet, changes in TRL apoB-100 PR were negatively correlated with changes in plasma eicosapentaenoic and docosahexaenoic acids. In conclusion, the high-fish diet decreased TRL apoB-100 and TRL apoB-48 concentrations chiefly by decreasing their PR. Both diets decreased LDL apoB-100 concentration by increasing LDL apoB-100 FCR and decreased HDL apoA-I concentration by decreasing HDL apoA-I PR.  相似文献   
5.
6.
Saroglitazar, being a dual PPAR-α/γ agonist, has shown beneficial effect in diabetic dyslipidemia and hypertriglyceridemia. Fibrates are commonly used to treat severe hypertriglyceridemia. However, the effect of saroglitazar in patients with moderate to severe hypertriglyceridemia was not evaluated. We conducted a study to compare the efficacy and safety of saroglitazar (4 mg) with fenofibrate (160 mg) in patients with moderate to severe hypertriglyceridemia. This was a multicenter, randomized, double-blinded, double-dummy, active-control, and noninferiority trial in adult patients with fasting triglyceride (TG) levels of 500–1,500 mg/dl. The patients were randomized in a 1:1 ratio to receive daily dose of saroglitazar or fenofibrate for 12 weeks. The primary efficacy end point was the percent change in TG levels at week 12 relative to baseline. The study comprised of 41 patients in the saroglitazar group and 41 patients in the fenofibrate group. We found that the percent reduction from baseline in TG levels at week 12 was significantly higher in the saroglitazar group (least square mean = ?55.3%; SE = 4.9) compared with the fenofibrate group (least square mean = ?41.1%; SE = 4.9; P = 0.048). Overall, 37 treatment-emergent adverse events (AEs) were reported in 24 patients (saroglitazar: 13; fenofibrate: 11). No serious AEs were reported, and no patient discontinued the study because of AEs. We conclude that saroglitazar (4 mg) is noninferior to fenofibrate (160 mg) in reducing TG levels after 12 weeks of treatment, was safe, and well tolerated.  相似文献   
7.
8.
9.
Apolipoprotein CIII (apoCIII), a major constituent of triglyceride-rich lipoprotein, has been proposed as a key contributor to hypertriglyceridemia on the basis of its inhibitory effects on lipoprotein lipase. Many immunochemical methods have been developed for human apoCIII quantification, including ELISA. However, a sensitive and quantitative assay for nonhuman primates is not commercially available. We developed a sensitive, quantitative, and highly specific sandwich ELISA to measure apoCIII in both nonhuman primate and human serum. Our assay generates a linear calibration curve from 0.01 μg/ml to 10 μg/ml using an apoCIII standard that was purified from cynomolgus monkey serum. It is highly reproducible (intra- and interplate CV < 5% and < 8%, respectively), sensitive enough to distinguish 10% difference of apoCIII present in serum, and has no interference from purified human apolipoprotein AI, AII, B, CI, CII, or E. The same assay can also be used to measure human apoCIII with a linear calibration curve from 0.005 μg/ml to 1 μg/ml using purified human apoCIII as the standard. This fast and highly sensitive ELISA could be a useful tool to investigate the role of apoCIII in lipoprotein transport and cardiovascular disease.  相似文献   
10.
Plasma triglyceride (TG) concentration is reemerging as an important cardiovascular disease risk factor. More complete understanding of the genes and variants that modulate plasma TG should enable development of markers for risk prediction, diagnosis, prognosis, and response to therapies and might help specify new directions for therapeutic interventions. Recent genome-wide association studies (GWAS) have identified both known and novel loci associated with plasma TG concentration. However, genetic variation at these loci explains only ~10% of overall TG variation within the population. As the GWAS approach may be reaching its limit for discovering genetic determinants of TG, alternative genetic strategies, such as rare variant sequencing studies and evaluation of animal models, may provide complementary information to flesh out knowledge of clinically and biologically important pathways in TG metabolism. Herein, we review genes recently implicated in TG metabolism and describe how some of these genes likely modulate plasma TG concentration. We also discuss lessons regarding plasma TG metabolism learned from various genomic and genetic experimental approaches. Treatment of patients with moderate to severe hypertriglyceridemia with existing therapies is often challenging; thus, gene products and pathways found in recent genetic research studies provide hope for development of more effective clinical strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号