首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  国内免费   1篇
  2023年   1篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(5):882-889
The VP4 protein of infectious bursal disease virus (IBDV) is a serine protease that processes the polyprotein for viral assembly. VP4 has been found to associate primarily with type II IBDV tubules that are 24 nm in diameter. In this study, a chimeric VP4, assigned as HS1VP4, was constructed with a VP4-autocleavage site inserted between the N-terminal His-tag and the VP4 sequence. The results showed that the VP4 forms tubules after the self-cleavage of HS1VP4 when expressed in Escherichia coli. Furthermore, a deletion of 28 amino acids at the C-terminus of VP4 resulted in monomers and dimers instead of tubule formation; mutants of S652A and K692A at active site destroyed the activity. The endopeptidase activity of these monomers and dimers was approximately 12.5 times higher than that of VP4 tubules. Additionally, the formation of tubules inhibited VP4 protease activity, as demonstrated through in vitro assays. The production and characterization of monomers or dimers that have greater endopeptidase activity and protease activity than tubules can provide further insight into VP4 tubule assembly and the regulation of VP4 activity in host cells; this insight will facilitate the development of new anti-IBDV strategies.  相似文献   
2.
为了鉴定pucBA基因表达受氧调控的顺式调节位点,通过PCR和多聚核苷酸定点、突变的体外操作,在puc转录子5'上游非编码区产生了7个不同突变和5个不同10bP缺失序列。构建了含有各种顺式突变的puc上游区、puc启动子和报告基因lacZ的转录融合子。通过融合子β-半乳糖苷酶活性分析,发现位于puc启动子上游二元对称结构的突变使得puc基因在有氧条件下去阻遏表达。IHF束缚位点的突变可使β-半乳糖苷酶活性提高。  相似文献   
3.
4.
Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations. Here, we show that the ploidy increased for two consecutive generations due to unreduced but viable gametes in the Arabidopsis cyclin a1;2‐2 (also named tardy asynchronous meiosis‐2) mutant, but the resultant octaploid plants produced progeny of either the same or reduced ploidy via genomic reductions during meiosis and pollen mitosis. Ploidy reductions through sexual reproduction were also observed in independently generated artificial octaploid and hexaploid Arabidopsis plants. These results demonstrate that octaploid is likely the maximal ploidy produced through sexual reproduction in Arabidopsis. The polyploidy‐associated genomic instability may be a general phenomenon that constrains ploidy levels in species evolution. genesis 48:254–263, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
5.
This work describes in-depth NMR characterization of a unique low-barrier hydrogen bond (LBHB) between an active site residue from the enzyme and a bound inhibitor: the complex between secreted phospholipase A(2) (sPLA(2), from bee venom and bovine pancreas) and a transition-state analog inhibitor HK32. A downfield proton NMR resonance, at 17-18 ppm, was observed in the complex but not in the free enzyme. On the basis of site-specific mutagenesis and specific 15N-decoupling, this downfield resonance was assigned to the active site H48, which is part of the catalytic dyad D99-H48. These results led to a hypothesis that the downfield resonance represents the proton (H(epsilon 2) of H48) involved in the H-bonding between D99 and H48, in analogy with serine proteases. However, this was shown not to be the case by use of the bovine enzyme labeled with specific [15N(epsilon 2)]His. Instead, the downfield resonance arises from H(delta1) of H48, which forms a hydrogen bond with a non-bridging phosphonate oxygen of the inhibitor. Further studies showed that this proton displays a fractionation factor of 0.62(+/-0.06), and an exchange rate protection factor of >100 at 285 K and >40 at 298 K, which are characteristic of a LBHB. The pK(a) of the imidazole ring of H48 was shown to be shifted from 5.7 for the free enzyme to an apparent value of 9.0 in the presence of the inhibitor. These properties are very similar to those of the Asp em leader His LBHBs in serine proteases. Possible structural bases and functional consequences for the different locations of the LBHB between these two types of enzymes are discussed. The results also underscore the importance of using specific isotope labeling, rather than extrapolation of NMR results from other enzyme systems, to assign the downfield proton resonance to a specific hydrogen bond. Although our studies did not permit the strength of the LBHB to be accurately measured, the data do not provide support for an unusually strong hydrogen bond strength (i.e. >10 kcal/mol).  相似文献   
6.
ATP‐dependent proteases are crucial for cellular homeostasis. By degrading short‐lived regulatory proteins, they play an important role in the control of many cellular pathways and, through the degradation of abnormally misfolded proteins, protect the cell from a buildup of aggregates. Disruption or disregulation of mammalian mitochondrial Lon protease leads to severe changes in the cell, linked with carcinogenesis, apoptosis, and necrosis. Here we present the structure of the proteolytic domain of human mitochondrial Lon at 2 Å resolution. The fold resembles those of the three previously determined Lon proteolytic domains from Escherichia coli, Methanococcus jannaschii, and Archaeoglobus fulgidus. There are six protomers in the asymmetric unit, four arranged as two dimers. The intersubunit interactions within the two dimers are similar to those between adjacent subunits of the hexameric ring of E. coli Lon, suggesting that the human Lon proteolytic domain also forms hexamers. The active site contains a 310 helix attached to the N‐terminal end of α‐helix 2, which leads to the insertion of Asp852 into the active site, as seen in M. jannaschii. Structural considerations make it likely that this conformation is proteolytically inactive. When comparing the intersubunit interactions of human with those of E. coli Lon taken with biochemical data leads us to propose a mechanism relating the formation of Lon oligomers with a conformational shift in the active site region coupled to a movement of a loop in the oligomer interface, converting the proteolytically inactive form seen here to the active one in the E. coli hexamer.  相似文献   
7.
Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, gamma-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.  相似文献   
8.
The amino acid composition and architecture of all beta-barrel membrane proteins of known three-dimensional structure have been examined to generate information that will be useful in identifying beta-barrels in genome databases. The database consists of 15 nonredundant structures, including several novel, recent structures. Known structures include monomeric, dimeric, and trimeric beta-barrels with between 8 and 22 membrane-spanning beta-strands each. For this analysis the membrane-interacting surfaces of the beta-barrels were identified with an experimentally derived, whole-residue hydrophobicity scale, and then the barrels were aligned normal to the bilayer and the position of the bilayer midplane was determined for each protein from the hydrophobicity profile. The abundance of each amino acid, relative to the genomic abundance, was calculated for the barrel exterior and interior. The architecture and diversity of known beta-barrels was also examined. For example, the distribution of rise-per-residue values perpendicular to the bilayer plane was found to be 2.7 +/- 0.25 A per residue, or about 10 +/- 1 residues across the membrane. Also, as noted by other authors, nearly every known membrane-spanning beta-barrel strand was found to have a short loop of seven residues or less connecting it to at least one adjacent strand. Using this information we have begun to generate rapid screening algorithms for the identification of beta-barrel membrane proteins in genomic databases. Application of one algorithm to the genomes of Escherichia coli and Pseudomonas aeruginosa confirms its ability to identify beta-barrels, and reveals dozens of unidentified open reading frames that potentially code for beta-barrel outer membrane proteins.  相似文献   
9.
Clostridium thermocellum cellulase 9I (Cel9I) is a non-cellulosomal tri-modular enzyme, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b). The presence of CBM3c was previously shown to be essential for activity, however the mechanism by which it functions is unclear. We expressed the three recombinant modules independently in Escherichia coli and examined their interactions. Non-denaturing gel electrophoresis, isothermal titration calorimetry, and affinity purification of the GH9-CBM3c complex revealed a specific non-covalent binding interaction between the GH9 module and CBM3c. Their physical association was shown to recover 60-70% of the intact Cel9I endoglucanase activity.

Structured summary:

MINT-6946626:Cel9I (uniprotkb:Q02934) and Cel9I (uniprotkb:Q02934) bind (MI:0407) by comigration in non-denaturing gel electrophoresis (MI:0404)MINT-6946649:Cel9I (uniprotkb:Q02934) and Cel9I (uniprotkb:Q02934) bind (MI:0407) by molecular sieving (MI:0071)MINT-6946687:Cel9I (uniprotkb:Q02934) and Cel9I (uniprotkb:Q02934) bind (MI:0407) by isothermal titration calorimetry (MI:0065)MINT-6946706:Cel9I (uniprotkb:Q02934) binds (MI:0407) to Cel9I (uniprotkb:Q02934) by pull down (MI:0096)  相似文献   
10.
Multidimensional scaling analysis of nest site location, nesting interval, and aggressive and mating interactions revealed that male three-spined sticklebacks, Gasterosteus aculeatus, formed nesting clusters comprising five patterns of dyadic relationships. These patterns were defined by intervening variables such as size difference between the two males, nest site locations, synchronization of nesting cycles (egg presence in the nest), distance between two nests, and nest raiding behaviours. Several patterns of dyadic relationships were integrated among nesting males and their constellations indicated an expression of the social structure. Through an understanding the social structure, I described effects of social context or situations on individual reproductive success.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号