首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Metagenome‐derived LC11‐RNase H1 is a homolog of Sulfolobus tokodaii RNase H1 (Sto‐RNase H1). It lacks a C‐terminal tail, which is responsible for hyperstabilization of Sto‐RNase H1. Sto‐RNase H1 is characterized by its ability to cleave not only an RNA/DNA hybrid but also a double‐stranded RNA (dsRNA). To examine whether LC11‐RNase H1 also exhibits both RNase H and dsRNase activities, LC11‐RNase H1 was overproduced in Escherichia coli, purified, and characterized. LC11‐RNase H1 exhibited RNase H activity with similar metal ion preference, optimum pH, and cleavage mode of substrate with those of Sto‐RNase H1. However, LC11‐RNase H1 did not exhibit dsRNase activity at any condition examined. LC11‐RNase H1 was less stable than Sto‐RNases H1 and its derivative lacking the C‐terminal tail (Sto‐RNase H1ΔC6) by 37 and 13°C in Tm, respectively. To understand the structural bases for these differences, the crystal structure of LC11‐RNase H1 was determined at 1.4 Å resolution. The LC11‐RNase H1 structure is highly similar to the Sto‐RNase H1 structure. However, LC11‐RNase H1 has two grooves on protein surface, one containing the active site and the other containing DNA‐phosphate binding pocket, while Sto‐RNase H1 has one groove containing the active site. In addition, LC11‐RNase H1 contains more cavities and buried charged residues than Sto‐RNase H1. We propose that LC11‐RNase H1 does not exhibit dsRNase activity because dsRNA cannot fit to the two grooves on protein surface and that LC11‐RNase H1 is less stable than Sto‐RNase H1ΔC6 because of the increase in cavity volume and number of buried charged residues.  相似文献   
4.
Application of RNA interference (RNAi) for insect pest management is limited by variable efficiency of RNAi in different insect species. In Locusta migratoria, RNAi is highly efficient through injection of dsRNA, but oral delivery of dsRNA is much less effective. Efforts to understand this phenomenon have shown that dsRNA is more rapidly degraded in midgut fluid than in hemolymph due to nuclease enzyme activity. In the present study, we identified and characterized two full-length cDNAs of double-stranded RNA degrading enzymes (dsRNase) from midgut of L. migratoria, which were named LmdsRNase2 and LmdsRNase3. Gene expression analysis revealed that LmdsRNase2 and LmdsRNase3 were predominantly expressed in the midgut, relatively lower expression in gastric caeca, and trace expression in other tested tissues. Incubation of dsRNA in midgut fluid from LmdsRNase3-suppressed larvae or control larvae injected with dsGFP resulted in high levels of degradation; however, dsRNA incubated in midgut fluid from LmdsRNase2-suppressed larvae was more stable, indicating LmdsRNase2 is responsible for dsRNA degradation in the midgut. To verify the biological function of LmdsRNase2 in vivo, nymphs were injected with dsGFP, dsLmdsRNase2 or dsLmdsRNase3 and chitinase 10 (LmCht10) or chitin synthase 1 (LmCHS1) dsRNA were orally delivered. Mortality associated with reporter gene knockdown was observed only in locusts injected with dsLmdsRNase2 (48% and 22%, for dsLmCht10 and dsLmCHS1, respectively), implicating LmdsRNase2 in reducing RNAi efficiency. Furthermore, recombinantly expressed LmdsRNase2 fusion proteins degraded dsRNA rapidly, whereas LmdsRNase3 did not. These results suggest that rapid degradation of dsRNA by dsRNase2 in the midgut is an important factor causing low RNAi efficiency when dsRNA is orally delivered in the locust.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号