首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   506篇
  免费   33篇
  国内免费   4篇
  543篇
  2023年   9篇
  2022年   13篇
  2021年   10篇
  2020年   11篇
  2019年   14篇
  2018年   12篇
  2017年   15篇
  2016年   16篇
  2015年   17篇
  2014年   30篇
  2013年   52篇
  2012年   11篇
  2011年   20篇
  2010年   7篇
  2009年   14篇
  2008年   17篇
  2007年   29篇
  2006年   16篇
  2005年   14篇
  2004年   17篇
  2003年   14篇
  2002年   12篇
  2001年   11篇
  2000年   5篇
  1999年   14篇
  1998年   13篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   13篇
  1993年   10篇
  1992年   4篇
  1991年   5篇
  1990年   7篇
  1989年   12篇
  1987年   7篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   6篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有543条查询结果,搜索用时 15 毫秒
1.
To assess exercise energy metabolism of forearm flexor muscles in rowers, six male student rowers and six control subjects matched for age and sex were studied using phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Firstly, to adjust for the effect of differences in cross-sectional muscle area, the maximal cross-sectional area (CSAmax) of the forearm flexor muscles was estimated in each individual using magnetic resonance imaging. Multistage exercise was then carried out with an initial energy production of 1 J.cm-2 CSAmax for 1 min and an increment of 1 J.cm-2 CSAmax every minute to the point of muscle exhaustion. A series of measurements of 31P-MRS were performed every minute. The CSAmax was significantly greater in the student rowers than in the control subjects [19.8 (SD 2.2) vs 17.1 (SD 1.2) cm2, P less than 0.05]. The absolute maximal exercise intensity (J.min-1) was greater in the rowers than in the control subjects. However, the maximal exercise intensity per unit of muscle cross sectional area (J.min-1.cm-2) was not significantly different between the two groups. During mild to moderate exercise intensities, a decrease in phosphocreatine and an increase in inorganic phosphate before the onset of acidosis were significantly less in the rowers, indicating a requirement of less adenosine 5'-diphosphate to drive adenosine 5'-triphosphate production. The onset of acidosis was also significantly delayed in the rowers. No difference was observed in forearm blood flow between the two groups at the same exercise intensity (J.min-1.cm-2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
The relative appearance of the parietal muscles in the development of the zooids has been studied in several ctenostomatous and “cheilostomatous” species. A comparison of the different on-togenetical sequences demonstrated that a “cheilostomatous” type of organization of the zooids with a great probability has been achieved in minimum three times independentl and originated from different ctenostomatous sub-grous: the Membranidea from plesiomorgic victorelloids (ancestors of Bulbella with not yet developed peristomial tube), the Inoviceiata (Aetea) from advanced forms of victorelloids with reduced primary parietal muscles (perhaps stcies related to Pottsiella), and Penetrantia from arachnidioid or vesicularioid ancestors (?). Therefore, the classical orders α“Ctenostomata” and “Cheilostomata” represent only “stage groups” but no monohyletic systematical units. Because of the new concept and interpretation I propose a new name for the united group: Cteno-Cheilostomata, supra-ord. nov.  相似文献   
3.
Summary Distribution of glycogen particles in semithin and ultrathin sections of biopsy samples from human muscles subjected to either short- or long-term running were investigated using PAS and Periodic Acid-ThioSemiCarbazide-Silver Proteinate (PA-TSC-SP) staining methods. Glycogen particles were predominantly found immediately under the sarcolemma or aligned along the myofibrillar Iband. After long-term exhaustive exercise type-1 fibers with a few or no glycogen particles in the core of the fibers were frequently observed. The subsarcolemmal glycogen stores of these depleted type-1 fibers were about three times as large as after exhaustive short-time exercise. Another indication of utilization of subsarcolemmal glycogen stores during anaerobic exercise was that many particles displayed a pale, rudimentary shape. This observation suggests fragmental metabolization of glycogen. Thus, depending on type of exercise and type of fiber differential and sequential glycogen utilization patterns can be observed.  相似文献   
4.
Summary K- and ACh-induced responses of the radular sac, odontophore retractor, and radular retractor muscles ofBusycon canaliculatum were found to be strongly dependent upon [Ca]0. Diltiazem had strong positive inotropic and chronotropic actions on fast twitch activity in the odontophore retractor and radular protractor muscles. K-induced tonic force in these muscles was partly inhibited by diltiazem but only at very high concentrations. ACh responses in all muscles were eliminated by diltiazem. Nifedipine enhanced fast twitches and tonic force in response to high K, and induced persistent spontaneous fast twitch discharges. Nifedipine inhibited ACh-induced tonic force, but induced rhythmic bursts of fast twitches persisting long after nifedipine washout. Verapamil strongly inhibited K- and ACh-induced tonic force in all three muscles at high concentration, but stimulated fast twitch responses and converted ACh contractures into fast twitch activity. Sucrose gap studies showed that nifedipine and diltiazem reduced K- and ACh-induced tension and depolarization. Paradoxically, verapamil reduced K- and ACh-induced tension but significantly enhanced their induced depolarizations. Diltiazem, nifedipine and verapamil did not act like slow Ca channel antagonists in these muscles. This may reflect differences in channel structure between molluscs and mammals, or differences in the cellular calcium release pathways operated by such channels in molluscan and mammalian muscle. These Ca-ant-agonists appeared to act as agonists of fast twitch activity in these muscles and antagonists of the ACh-induced calcium release pathway for tonic force development.  相似文献   
5.
Bone mineral density (BMD) in the femoral neck and lumbar spine was measured for 355 postmenopausal 48- to 56-year-old women and the BMD in five different regions in the mandible for 77. All 355 women were also classified according to the size of the masseter muscle. Both skeletal measures and the BMD of the buccal cortex distally from the foramen mentale were compared with the size of the masseter muscle. This study indicates that functional stress, caused by the masseter muscle, is involved in maintaining bone mineral density in edentulous regions of the mandible. Those individuals who are physically active or are bruxists may lose less mineral, after extractions of teeth, from those regions of the jaw bones where the muscles are attached.  相似文献   
6.
Following extended periods of relative inactivity, or prior to migration, birds are able to increase the aerobic capacity of their locomotory muscles. Thyroid hormones may influence this process. A preliminary study was undertaken to assess the ability of elevated levels of thyroxine to increase the aerobic capacity of the locomotory and cardiac muscles of adult tufted ducks. Administration of thyroxine in the food for 8 weeks had little effect on body mass or on the masses of the pectoralis, semitendinosus and iliofibularis muscles, although there were increases in resting oxygen consumption and in the mass of the cardiac ventricles. The maximum activity of the aerobic enzyme, citrate synthase, was significantly greater in the left ventricle, liver, and iliofibularis muscles (P<0.005) of treated birds. However, while there was clearly no difference in activity in the semimembranosus leg muscle, that of the pectoralis was not quite significant (P=0.078). It is concluded that addition of supra-physiological levels of exogenous thyroxine may induce a differential increase in the maximum activity of citrate synthase in the locomotor muscles of the tufted duck, which is correlated with the fibre type composition of these muscles. These results are consistent with those found in studies on rats, with slow oxidative fibres being the most sensitive, and fast glycolytic fibres the least sensitive, to thyroxine treatment.Abbreviations BM body mass - CS citrate synthase - CYTOX cytochrome c oxidase - FG last glycolytic - FOG fast oxydative glycolytic - VO2 oxygen consumption - SO slow oxidative - T4 thyroxine - T3 triiodothyronine  相似文献   
7.
Aglantha digitale swims in two ways: a slow rhythmical swim typical of hydromedusae in general and a sudden rapid movement that appears to be an escape response. The swimming musculature is an extremely well developed striated circular muscle layer that possesses a sarcoplasmic reticulum. The nervous system of this species can be divided into three units: an inner nerve ring and an outer nerve ring, which are joined by unusually large transmesogleal pathways, a group of giant axons that extends over the surface of the swimming muscle, and the radial canal. Well developed ciliated sensory cells are located on the exumbrellar surface of the margin. Consideration of these properties of the organisation of this species suggests that normal slow swimming is controlled by a mechanism similar to that found in other medusae, while the escape response is the result of the action of the giant axons.  相似文献   
8.
Résumé Au cours de l'épitoquie des Nereidiens, les fibres musculaires longitudinales ne sont pas forméesde novo, à partir de cellules indifferenciées ou myoblastes, mais proviennent des fibres anciennes atoques. Celles-ci subissent une véritable dédifférenciation plus ou moins synchrone d'une redifférenciation. Les deux processus ne sont pas successifs mais simultanés, et une dédifférenciation complète est absente.Les premières cellules en évolution appartiennent à la couche musculaire externe; ensuite, les fibres des assises plus profondes se transforment à leur tour.Les transformations consistent en: 1) La dédifférenciation du bord interne ou coelomique de la fibre. Les structures contractiles disparaissent dans cette zone et de nombreuses particules de glycogène se différencient sans relation avec le reticulum endoplasmique ou les ribosomes. Aucun lysosome ou signe précurseur ne peuvent être observés avant la disparition des filaments contractiles et des éléments Z. 2) Le bord coelomique s'hypertrophie. Dans la région axiale de la fibre, de nombreuses mitochondries et particules et de glycogène remplacent le matériel contractile. Corrélativement, l'épaisseur des bandes A et I diminue. 3) La fibre hétéronéreidienne ou épitoque est constituée et présente deux parties: un cortex myoplasmique et une médulla sarcoplasmique, remplie de mitochondries et de glycogène. Le noyau renfermant un nucléole volumineux est situé dans une hernie sarcoplasmique latérale.
Evolution of muscles inNereidae (Annelida polychaeta) during Epitoky. III. Dedifferentiation of the longitudinal fibres
Summary During epitoky inNereidae, the longitudinal muscle fibres are not formedde novo from undifferentiated cells or myoblasts, but arise from the old atokous fibres. These undergo a true dedifferentiation more or less synchronously with a redifferentiation. The two processes are not successive but simultaneous and there is no complete dedifferentiation.The first cells that develop are in the outside muscle layer; then the fibres of the inside layers are transformed in their turn.The transformations consist of: 1) Dedifferentiation of the edge of the inner or coelomic fibre. The contractile structures disappear in this part and numerous glycogen particles differentiate, unrelated to endoplasmic reticulum or ribosomes. No lysosomes or precursory markings are observed before the disappearance of contractile filaments and Z rods. 2) The coelomic edge becomes enlarged. In the axial region of the fibre, numerous mitochondria and and glycogen particles take the place of the contractile material. Consequently, the thickness of A and I bands decreases. 3) The heteronereid or epitokous fibre is formed and shows two parts: a myoplasmic cortex and a sarcoplasmic medulla, filled with mitochondria and glycogen. The nucleus with a voluminous nucleolus settles inside a lateral sarcoplasmic swelling.
  相似文献   
9.
The gluteal musculature of primates has been a focus of great research interest among those who study human evolution. Most current theorists agree that gluteus superficialis (= maximus) need not have changed its action in the step from pongid to hominid, but dispute has arisen over a purported change in action and role of the gluteus medius. To clarify the functions of gluteus medius, gluteus superficialis, and tensor fasciae femoris during ape locomotion, we conducted a telemetered electromyographic study of these muscles in two gibbons, one orangutan, and four chimpanzees as they walked bipedally on the ground and on a horizontal tree trunk, walked quadrupedally on the same substrates, and climbed a vertical tree trunk. The results indicate that the gluteus medius of apes is not, as has been previously suggested, primarily an extensor of the thigh; its action is chiefly that of medial rotation. The role of the gluteus medius during bipedality is the same in apes and humans–to provide side-to-side balance of the trunk at the hip. The change in the hominid lateral balance mechanism can be viewed as primarily osteological, allowing preservation of the same muscle function with an extended thigh. As a result, the stride length is increased and there occurs a diminution of the demands placed on other muscles to maintain anteroposterior balance at the hip and knee. Our data also support the view that vertical climbing may be specifically preadaptive to bipedalism. One may picture the earliest hominid as part biped, when on the ground traveling between scattered food trees, and part climber, when moving from the ground to food.  相似文献   
10.
During the process of long term starvation both muscles and hepatopancreas are affected in their biochemical composition at different rates. During early days of starvation an increase in the muscular and hepatopancreatic glycogen is observed. At the same time a simultaneous decrease in the muscular lipid content is also observed. At a slightly later period a decrease in the hepatopancreatic lipid content is also noticed. This amount of decrease is slow in the early days of starvation and rapid in later days. Decrease in the muscular and hepatopancreatic protein content is observed when there is not an adequate quantity of hepatopancreatic lipid to be consumed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号