首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   63篇
  国内免费   27篇
  2024年   3篇
  2023年   20篇
  2022年   33篇
  2021年   42篇
  2020年   38篇
  2019年   29篇
  2018年   44篇
  2017年   38篇
  2016年   36篇
  2015年   36篇
  2014年   54篇
  2013年   46篇
  2012年   31篇
  2011年   26篇
  2010年   22篇
  2009年   26篇
  2008年   21篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1974年   1篇
排序方式: 共有611条查询结果,搜索用时 15 毫秒
1.
Atherogenesis is potentiated by metabolic abnormalities that contribute to a heightened state of systemic inflammation resulting in endothelial dysfunction. However, early functional changes in endothelium that signify an individual''s level of risk are not directly assessed clinically to help guide therapeutic strategy. Moreover, the regulation of inflammation by local hemodynamics contributes to the non-random spatial distribution of atherosclerosis, but the mechanisms are difficult to delineate in vivo. We describe a lab-on-a-chip based approach to quantitatively assay metabolic perturbation of inflammatory events in human endothelial cells (EC) and monocytes under precise flow conditions. Standard methods of soft lithography are used to microfabricate vascular mimetic microfluidic chambers (VMMC), which are bound directly to cultured EC monolayers.1 These devices have the advantage of using small volumes of reagents while providing a platform for directly imaging the inflammatory events at the membrane of EC exposed to a well-defined shear field. We have successfully applied these devices to investigate cytokine-,2 lipid-3, 4 and RAGE-induced5 inflammation in human aortic EC (HAEC). Here we document the use of the VMMC to assay monocytic cell (THP-1) rolling and arrest on HAEC monolayers that are conditioned under differential shear characteristics and activated by the inflammatory cytokine TNF-α. Studies such as these are providing mechanistic insight into atherosusceptibility under metabolic risk factors.  相似文献   
2.
Summary Spermatozoa from the cauda epididymidis of gossypol-treated rats exhibit distinctive departures from the morphology of spermatozoa from control rats: wrinkled and disorganized cell membrane in the head and tail regions, cell membrane missing from segments of the tail midpiece and principal piece regions, malformed heads, decapitate spermatozoa, retention of a cytoplasmic droplet at variable loci along tail midpieces, and looped tails. The observations suggest that gossypol exerts its contraceptive effect during spermatocytogenesis and spermiogenesis, including the posttesticular development and maturation of spermatozoa in the epididymis.  相似文献   
3.
4.
Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid‐state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high‐throughput exploration of the parametric landscape of functional solids and devices in a resource‐, time‐, and cost‐efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid‐based compositional gradients into solid‐state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic‐assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid‐state compositional lateral gradients.  相似文献   
5.
6.
Organs‐on‐chip (OoCs) are catching on as a promising and valuable alternative to animal models, in line with the 3Rs initiative. OoCs enable the creation of three‐dimensional (3D) tissue microenvironments with physiological and pathological relevance at unparalleled precision and complexity, offering new opportunities to model human diseases and to test the potential therapeutic effect of drugs, while overcoming the limited predictive accuracy of conventional 2D culture systems. Here, we present a liver‐on‐a‐chip model to investigate the effects of two naturally occurring polyphenols, namely quercetin and hydroxytyrosol, on nonalcoholic fatty liver disease (NAFLD) using a high‐content analysis readout methodology. NAFLD is currently the most common form of chronic liver disease; however, its complex pathogenesis is still far from being elucidated, and no definitive treatment has been established so far. In our experiments, we observed that both polyphenols seem to restrain the progression of the free fatty acid‐induced hepatocellular steatosis, showing a cytoprotective effect due to their antioxidant and lipid‐lowering properties. In conclusion, the findings of the present work could guide novel strategies to contrast the onset and progression of NAFLD.  相似文献   
7.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
8.
Caenorhabditis elegans is a leading model organism for studying the basic mechanisms of aging. Progress has been limited, however, by the lack of an automated system for quantitative analysis of longevity and mean lifespan. To address this barrier, we developed ‘WormFarm’, an integrated microfluidic device for culturing nematodes. Cohorts of 30–50 animals are maintained throughout their lifespan in each of eight separate chambers on a single WormFarm polydimethylsiloxane chip. Design features allow for automated removal of progeny and efficient control of environmental conditions. In addition, we have developed computational algorithms for automated analysis of video footage to quantitate survival and other phenotypes, such as body size and motility. As proof‐of‐principle, we show here that WormFarm successfully recapitulates survival data obtained from a standard plate‐based assay for both RNAi‐mediated and dietary‐induced changes in lifespan. Further, using a fluorescent reporter in conjunction with WormFarm, we report an age‐associated decrease in fluorescent intensity of GFP in transgenic worms expressing GFP tagged with a mitochondrial import signal under the control of the myo‐3 promoter. This marker may therefore serve as a useful biomarker of biological age and aging rate.  相似文献   
9.
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis.  相似文献   
10.
《Autophagy》2013,9(2):388-389
Liver steatosis is characterized by an abnormal buildup of hepatic fat content. Our understanding of how this fat balance is normally regulated remains limited. Recently, autophagy has been implicated as one potential mechanism contributing to the breakdown of cytoplasmic fat storage organelles known as lipid droplets (LDs) in the hepatocyte. In our recent publication, we show that the large GTPase DNM2/dynamin 2 helps promote lipophagic turnover by facilitating the scission of nascent lysosomes from autolysosomal tubules during autophagic flux. Genetic and pharmacological perturbations of DNM2 function in cultured cells result in the generation of aberrantly long autolysosomal reformation tubules. As a consequence, hepatocytes accumulate LDs. An alleviation of DNM2 inhibition results in the scission of reformation tubules and the return of LD turnover to normal levels. DNM2 therefore plays a critical role in the regulation of the lipophagic machinery in the hepatocyte.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号