首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  国内免费   3篇
  2023年   1篇
  2020年   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae , a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.  相似文献   
2.
In the frame of the largest French project of artificial production reefs, initiated by the city of Marseilles in 2001, the present study aimed at describing the hydrodynamic pattern of the coastal area considered, by the use of a 3D numerical modelling. Results were local wind statistics, bottom current fields and drifting particle maps. The knowledge of the hydrodynamic connexions between particle (such as larvae) sources or targeted areas linked to the reefs, allows us to explain the success or failure of the reefs' colonizing. Moreover, the study confirms the wind spatial variability and demonstrates the error resulting from the use of an average but locally absent wind direction.  相似文献   
3.
1. Workers in several bee species travel to conspecific nests (‘drifting’), enter them, and produce male offspring inside them, so acting as intra‐specific social parasites. This adds a new dimension to bees' reproductive behaviour and spatial ecology, but the extent to which drifting occurs over field scales, i.e. at natural nest densities in field conditions, has been unclear. 2. Using the bumble bee Bombus terrestris (Linnaeus) as a model system, we sought to determine rates of worker drifting at field scales and the frequency of potential drifter workers in wild nests. 3. A field experiment with 27 colonies showed that workers travelled to, and became accepted in, conspecific nests that were up to 60 m away, although the number of accepted drifter workers within nests fell significantly with distance. The rate at which nests were entered by drifters was relatively high and significantly exceeded the rate at which drifters became accepted. 4. Microsatellite genotyping of eight field‐collected nests from Greater London, U.K., showed that a low frequency (3%) of workers were not full sisters of nestmate workers and hence were likely to have been drifter workers. 5. It is therefore concluded that workers can drift to conspecific nests over field scales and confirmed that successful drifting occurs in natural populations. Drifting appears to be a natural but low‐frequency behaviour permitting B. terrestris workers to gain direct fitness.  相似文献   
4.
Drifting Macrocystis pyrifera (L.) C. Agardh sporophytes have long been viewed as the primary long‐distance dispersal vector; yet, few data exist that support the ability of reproductive viable sporophytes to actually travel the presumed hundreds to thousands of kilometers. This study addressed the reproductive longevity of experimental and naturally occurring M. pyrifera drifters. Temporal variability in sporophyte size and reproduction was estimated for experimental drifting sporophytes that were tethered to surface buoys and compared with attached plants (controls). Reproductive viability was also studied for beach‐cast drifters (BCD), and naturally drifting sporophytes observed during field surveys in Monterey Bay. Detached drifting sporophytes were tracked with radio transmitters to follow drifter trajectories and to measure drifting speed. Experimental drifters (ED) experienced a 74% reduction in frond length after 35 days, a 76% reduction in average frond number after 70 days, and a reduction in average sorus area by 83% after 28 days. Although zoospore production was reduced following detachment, sporophytes remained fertile with high zoospore germination success as long as sori were present (125 days). Zoospore production and germination success for natural and BCD was similar to ED. The average displacement of radio‐tagged drifters was 7.12 km·day?1, suggesting that a sporophyte adrift for 125 days disperses viable propagules (zoospores) over 890 km (±363). Dispersal of propagules is important for population restoration, distribution, and genetic diversity. Such dispersal distances are long enough to connect potentially all Northern Hemisphere Macrocystis populations across a generational timescale and may facilitate inter‐hemispheric gene flow.  相似文献   
5.
Aarnio  Katri  Mattila  Johanna 《Hydrobiologia》2000,440(1-3):347-355
Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.  相似文献   
6.
Oceanic rafting is thought to play a fundamental role in assembling the biological communities of isolated coastal ecosystems. Direct observations of this key ecological and evolutionary process are, however, critically lacking. The importance of macroalgal rafting as a dispersal mechanism has remained uncertain, largely owing to lack of knowledge about the capacity of fauna to survive long voyages at sea and successfully make landfall and establish. Here, we directly document the rafting of a diverse assemblage of intertidal organisms across several hundred kilometres of open ocean, from the subantarctic to mainland New Zealand. Multispecies analyses using phylogeographic and ecological data indicate that 10 epifaunal invertebrate species rafted on six large bull kelp specimens for several weeks from the subantarctic Auckland and/or Snares Islands to the Otago coast of New Zealand, a minimum distance of some 400–600 km. These genetic data are the first to demonstrate that passive rafting can enable simultaneous trans-oceanic transport and landfall of numerous coastal taxa.  相似文献   
7.
An immense variety of fish may, on occasions, aggregate around or beassociated with floating structures such as drifting algae, jelliedzooplankton, whales, floats or anchored fish aggregating devices (ineffect, there are over 333 fish species belonging to 96 familiesrecorded in the literature).Several hypotheses have been advanced to explain this behaviour ofpelagic fish, although the most widely accepted theory is that fish usefloating materials, to some extent, to protect themselves frompredators. However, we think that aggregation under floats may be theresult of behaviour that has evolved to safeguard the survival of eggs,larvae and juvenile stages, during dispersion to other areas. Naturalfloating structures (e.g., algae, branches of trees) drift in seacurrents that originate in places where the floating objects arefrequently found (e.g., river estuaries, coastal areas). These same seacurrents also introduce some of the planktonic production generated inthese areas into the oligotrophic pelagic environment. Fish associatedwith drifting floating structures probably feed on invertebratesassociated with the structures. However, they may also benefit from theaccumulated plankton in the converging waters. Adult fish of somemigratory species (tuna, dolphinfish, etc.) have also developed similarassociative behaviour around drifting objects for other reasons (e.g.,resting places, presence of bait fish, geographical references andschool recomposition). In this context, the meeting point hypothesis isonly applicable to one specific case, the tuna and tuna-like species.Aggregative and associative behaviour, under and around floatingdevices, may be the result of convergent behaviors that result fromdifferent motivations. However, generally this behaviour can beexplained by the fact that drifting floating objects represent a meansof reaching relatively rich areas, where larvae and juvenile fish havean increased chance of survival.  相似文献   
8.
Complex haploid‐diploid life cycles amongst marine organisms may be maintained by ecological differences in life‐history phases. For red algal species within the Gigartinaceae, such differences may be driven, in part, by different cell wall composition and resultant biomechanical strengths of haploid and diploid phases. A field experiment tested the attachment strengths of gametophytes and tetrasporophytes of the isomorphic red alga, Chondrus verrucosus (with comparisons of fertile and vegetative fronds, with and without natural tissue damage across three wave‐exposed sites). Seventy‐nine percent of all fronds broke at the stipe‐holdfast junction. There were significant differences in attachment strength (break force and break stress), but not gross morphology (frond length, number of branch axes, wet weight and cross‐sectional area of fronds that dislodged at the stipe‐holdfast junction) of life‐history phases, with tetrasporophytes exhibiting weaker tissue strength and attachment, and therefore greater susceptibility to dislodgement by waves. However, fertility and tissue damage did not consistently influence dislodgement in pull‐to‐break tests simulating the effects of single waves. The ecological and evolutionary consequences of greater susceptibility to dislodgement of tetrasporophytes (relative to gametophytes) warrant further investigation.  相似文献   
9.
金枪鱼类会聚集在漂浮物周围,人类依据该行为特性研制出人工集鱼装置(fish aggregation devices,FADs)诱集金枪鱼,从而使金枪鱼围网的产量和捕捞效率大幅提高.但目前科学界仍不确定FADs为何能够吸引金枪鱼以及其广泛使用是否会对金枪鱼资源和大洋中上层生态系统产生潜在影响.针对这些问题,国外学者展开了大量以FADs周围金枪鱼为研究对象的个体行为学试验.本文归纳并整理了过去30多年中较可靠和经典的相关试验,从金枪鱼的趋向性行为、集群行为、随附行为、摄食行为和垂直移动行为5个方面分别阐述了漂流FADs和锚泊FADs下金枪鱼的行为模式,并对国内今后开展相关研究的重点方向和注意事项进行了展望.  相似文献   
10.
Functional worker sterility is the defining feature of insect societies. Yet, workers are sometimes found reproducing in their own or foreign colonies. The proximate mechanisms underlying these alternative reproductive phenotypes are keys to understanding how reproductive altruism and selfishness are balanced in eusocial insects. In this study, we show that in honeybee (Apis mellifera) colonies, the social environment of a worker, that is, the presence and relatedness of the queens in a worker's natal colony and in surrounding colonies, significantly influences her fertility and drifting behaviour. Furthermore, subfamilies vary in the frequency of worker ovarian activation, propensity to drift and the kind of host colony that is targeted for reproductive parasitism. Our results show that there is an interplay between a worker's subfamily, reproductive state and social environment that substantially affects her reproductive phenotype. Our study further indicates that honeybee populations show substantial genetic variance for worker reproductive strategies, suggesting that no one strategy is optimal under all the circumstances that a typical worker may encounter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号